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CHAPTER
ONE

MODELING COVID 19

Contents

o Modeling COVID 19
— Overview

— The SIR Model

Implementation

— Experiments

Ending Lockdown

1.1 Overview

This is a Python version of the code for analyzing the COVID-19 pandemic provided by Andrew Atkeson.
See, in particular
« NBER Working Paper No. 26867
o COVID-19 Working papers and code
The purpose of his notes is to introduce economists to quantitative modeling of infectious disease dynamics.
Dynamics are modeled using a standard SIR (Susceptible-Infected-Removed) model of disease spread.
The model dynamics are represented by a system of ordinary differential equations.
The main objective is to study the impact of suppression through social distancing on the spread of the infection.
The focus is on US outcomes but the parameters can be adjusted to study other countries.

We will use the following standard imports:
import matplotlib.pyplot as plt

import numpy as np
from numpy import exp

We will also use SciPy’s numerical routine odeint for solving differential equations.

from scipy.integrate import odeint
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This routine calls into compiled code from the FORTRAN library odepack.

1.2 The SIR Model

In the version of the SIR model we will analyze there are four states.
All individuals in the population are assumed to be in one of these four states.
The states are: susceptible (S), exposed (E), infected (I) and removed ®.
Comments:

» Those in state R have been infected and either recovered or died.

» Those who have recovered are assumed to have acquired immunity.

« Those in the exposed group are not yet infectious.

1.2.1 Time Path

The flow across states follows the path S — F — I — R.
All individuals in the population are eventually infected when the transmission rate is positive and i(0) > 0.
The interest is primarily in

« the number of infections at a given time (which determines whether or not the health care system is overwhelmed)
and

« how long the caseload can be deferred (hopefully until a vaccine arrives)
Using lower case letters for the fraction of the population in each state, the dynamics are
50 =80 o0l
) s(t)i(t) — oe(t) (1.1)
( ) = oe(t) —7i(t)
In these equations,
o B(t) is called the transmission rate (the rate at which individuals bump into others and expose them to the virus).
o o is called the infection rate (the rate at which those who are exposed become infected)
« 7y is called the recovery rate (the rate at which infected people recover or die).
« the dot symbol y represents the time derivative dy/dt.
We do not need to model the fraction r of the population in state R separately because the states form a partition.
In particular, the “removed” fraction of the populationisr =1 —s —e — .
We will also track ¢ = ¢ + r, which is the cumulative caseload (i.e., all those who have or have had the infection).

The system (1.1) can be written in vector form as
T = F(x,t), x = (s,e,1) (1.2)

for suitable definition of F' (see the code below).
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1.2.2 Parameters

Both ¢ and ~y are thought of as fixed, biologically determined parameters.
As in Atkeson’s note, we set
o 0 = 1/5.2 to reflect an average incubation period of 5.2 days.
o v = 1/18 to match an average illness duration of 18 days.
The transmission rate is modeled as
o [(t) := R(t)y where R(t) is the effective reproduction number at time t.

(The notation is slightly confusing, since R(t) is different to R, the symbol that represents the removed state.)

1.3 Implementation

First we set the population size to match the US.

pop_size = 3.3e8

Next we fix parameters as described above.

vy =1/ 18
=1/ 5.2

Now we construct a function that represents F' in (1.2)

def F(x, t, R0=1.6):

mmn

Time derivative of the state vector.

* x 1s the state vector (array_like)
* t is time (scalar)
* RO is the effective transmission rate, defaulting to a constant

mrn

s, e, 1 =x

# New exposure of susceptibles

B = RO(t) * y if callable(R0O) else RO * y

ne =B * s * i

# Time derivatives

ds = - ne
de = ne — o * e
di = o0 * e -y * i

return ds, de, di

Note that RO can be either constant or a given function of time.

The initial conditions are set to

# initial conditions of s, e, 1
1.0 = 1le-7
(continues on next page)
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In vector form the initial condition is

x 0 =s_0, e 0, i_0

We solve for the time path numerically using odeint, at a sequence of dates t_vec.

def solve_path (RO, t_vec, x_init=x_0):

mmn

Solve for i(t) and c(t) via numerical integration,
given the time path for RO.

mrmn

G = lambda x, t: F(x, t, RO)
s_path, e_path, i_path = odeint (G, x_init, t_vec) .transpose ()

c_path = 1 - s_path - e_path # cumulative cases
return i_path, c_path

1.4 Experiments

Let’s run some experiments using this code.

The time period we investigate will be 550 days, or around 18 months:

t_length = 550
grid_size = 1000
t_vec = np.linspace (0, t_length, grid_size)

1.4.1 Experiment 1: Constant RO Case

Let’s start with the case where RO is constant.

We calculate the time path of infected people under different assumptions for RO:
RO_vals = np.linspace(l.6, 3.0, 6)

labels = [f'SRO = {r:.2f}$' for r in RO_vals]

i_paths, c_paths = [], []

for r in RO_vals:
i_path, c_path = solve_path(r, t_vec)
i_paths.append (i_path)
c_paths.append (c_path)

Here’s some code to plot the time paths.
def plot_paths (paths, labels, times=t_vec):
fig, ax = plt.subplots /()

for path, label in zip(paths, labels):

(continued from previous page)

(continues on next page)
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(continued from previous page)

ax.plot (times, path, label=label)
ax.legend(loc="upper left')
plt.show ()

Let’s plot current cases as a fraction of the population.

plot_paths (i_paths, labels)

—— RO=1.60
—— RO=1.88
0.20{ —— RO=2.16
—— R0=2.44
— RO=2.72
—— RO =3.00
0.15 -
0.10 -
0.05
0.00
T T T T T T
0 100 200 300 400 500

As expected, lower effective transmission rates defer the peak of infections.
They also lead to a lower peak in current cases.

Here are cumulative cases, as a fraction of population:

plot_paths (c_paths, labels)

1.4. Experiments 11
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—— RO =1.60
—— R0O=1.88
0.8 — R0=2.16
—— R0O=2.44
—— R0O=2.72
—— RO =3.00
0.6 -
0.4 -
0.2 -
0.0 -
T T T T T T
0 100 200 300 400 500

1.4.2 Experiment 2: Changing Mitigation

Let’s look at a scenario where mitigation (e.g., social distancing) is successively imposed.

Here’s a specification for RO as a function of time.

def RO_mitigating(t, r0=3, n=1, r_bar=1.6):
RO = r0 * exp(—-n * t) + (1 — exp(—n * t)) * r_bar
return RO
The idea is that RO starts off at 3 and falls to 1.6.
This is due to progressive adoption of stricter mitigation measures.
The parameter n controls the rate, or the speed at which restrictions are imposed.

‘We consider several different rates:

n_vals = 1/5, 1/10, 1/20, 1/50, 1/100
labels = [fr'$\eta = {n:.2f}$' for n in n_vals]

This is what the time path of RO looks like at these alternative rates:
fig, ax = plt.subplots()

for n, label in zip(n_vals, labels):
ax.plot (t_vec, RO_mitigating(t_vec, n=n), label=label)

ax.legend()
plt.show ()

12 Chapter 1.
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3.0

2.8 7

2.6

2.4 1

2.2 7

2.0 1

1.8

1.6

T T T T T
0 100 200 300 400 500

Let’s calculate the time path of infected people:
i_paths, c_paths = [], []
for n in n_vals:
RO = lambda t: RO_mitigating(t, n=n)
i_path, c_path = solve_path (RO, t_vec)

i_paths.append (i_path)
c_paths.append (c_path)

These are current cases under the different scenarios:

plot_paths (i_paths, labels)

1.4. Experiments 13
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0.07 4 — n=0.20
— n=20.10
0.06 1 — n=0.05
— n=20.02
0.054 — n=0.01
0.04 ~
0.03 ~
0.02 ~
0.01 ~
0.00 ~
T T T T T T
)] 100 200 300 400 300
Here are cumulative cases, as a fraction of population:
plot_paths (c_paths, labels)
— n=0.20
0.6 9 — n=0.10
— n=20.05
054 — n=0.02
— n=20.01
0.4 1
0.3 1
0.2 1
0.1
0.0 1
T T T T T T
)] 100 200 300 400 300
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1.5 Ending Lockdown

The following replicates additional results by Andrew Atkeson on the timing of lifting lockdown.
Consider these two mitigation scenarios:

1. R, = 0.5 for 30 days and then R, = 2 for the remaining 17 months. This corresponds to lifting lockdown in 30
days.

2. R, = 0.5 for 120 days and then R, = 2 for the remaining 14 months. This corresponds to lifting lockdown in 4
months.

The parameters considered here start the model with 25,000 active infections and 75,000 agents already exposed to the
virus and thus soon to be contagious.

nitial conditions

= 25_000 / pop_size
75_000 / pop_size
=1 -1_0 - e_0

= s_0, e 0, i_0

# 1
i_0
e 0
s_0
x_0

Let’s calculate the paths:

RO_paths = (lambda t: 0.5 if t < 30 else 2,
lambda t: 0.5 if t < 120 else 2)

labels = [f'scenario {i}' for i in (1, 2)]
i_paths, c_paths = [], []
for RO in RO_paths:
i_path, c_path = solve_path (R0, t_vec, x_init=x_0)

i_paths.append (i_path)
c_paths.append(c_path)

Here is the number of active infections:

plot_paths (i_paths, labels)

1.5. Ending Lockdown 15
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0.12

—— scenario 1
scenario 2

0.10

0.08 -

0.06

0.04 1

0.02

0.00 -

T T T
)] 100 200 300
What kind of mortality can we expect under these scenarios?

Suppose that 1% of cases result in death

v =0.01

This is the cumulative number of deaths:

paths = [path * v * pop_size for path in c_paths]
plot_paths (paths, labels)

T
400

T
500
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le6
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This is the daily death rate:

paths =

[path * v * v * pop_size for path in i_paths]

plot_paths (paths, labels)

1.5. Ending Lockdown
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Pushing the peak of curve further into the future may reduce cumulative deaths if a vaccine is found.
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CHAPTER
TWO

LINEAR ALGEBRA

Contents

o Linear Algebra
— Overview
— Vectors

Matrices

Solving Systems of Equations

Eigenvalues and Eigenvectors

Further Topics

Exercises

2.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.

For example, many applied problems in economics and finance require the solution of a linear system of equations, such
as

Yy = axy + by
Yo = €T + dzo
or, more generally,
Y1 = 01171 + Q19T + 0+ ATy
: 2.1
Yn = Qp1Tq + Qpoy + o+ Qg
The objective here is to solve for the “unknowns” x1, ..., x, given aq, ..., G, and yq, ..., Y,,.
When considering such problems, it is essential that we first consider at least some of the following questions
» Does a solution actually exist?
« Are there in fact many solutions, and if so how should we interpret them?

« If no solution exists, is there a best “approximate” solution?

19
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« If a solution exists, how should we compute it?
These are the kinds of topics addressed by linear algebra.
In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.
We admit some overlap with this lecture, where operations on NumPy arrays were first explained.

Note that this lecture is more theoretical than most, and contains background material that will be used in applications as
we go along.

Let’s start with some imports:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

from scipy.linalg import inv, solve, det, eig

2.2 Vectors

A vector of length n is just a sequence (or array, or tuple) of n numbers, which we write as ¢ = (xq,...,2,) or
T =[x, .., 2,

We will write these sequences either horizontally or vertically as we please.

(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)
The set of all n-vectors is denoted by R™.

For example, R? is the plane, and a vector in R? is just a point in the plane.

Traditionally, vectors are represented visually as arrows from the origin to the point.

The following figure represents three vectors in this manner

fig, ax = plt.subplots(figsize=(10, 8))

# Set the axes through the origin

for spine in ['left', 'bottom']:
ax.spines|[spine] .set_position('zero')

for spine in ['right', 'top'l]:
ax.spines[spine].set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))

ax.grid()
vecs = ((2, 4), (=3, 3), (-4, -3.5))
for v in vecs:
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict (facecolor="'blue',
shrink=0,
alpha=0.7,
width=0.5))
ax.text (1.1 * v[0], 1.1 * v[1], str(v))
plt.show ()
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(2, 4)

(-3,3)

(-4, -3.5)

2.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.

As a matter of definition, when we add two vectors, we add them element-by-element

Ty (7 Ty + Yy
S 11 B g E R

Scalar multiplication is an operation that takes a number y and a vector = and produces

Y1
N = ’)’?32
VT

Scalar multiplication is illustrated in the next figure

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:
(continues on next page)
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(continued from previous page)

ax.spines[spine] .set_position('zero')
for spine in ['right', 'top']:
ax.spines[spine].set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))

x = (2, 2)
ax.annotate ('', xy=x, xytext=(0, 0),
arrowprops=dict (facecolor="blue',
shrink=0,
alpha=1,
width=0.5))
ax.text (x[0] + 0.4, x[1] - 0.2, '$x$', fontsize='16")
scalars = (-2, 2)
X = np.array (x)

for s in scalars:

v = s * x
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict (facecolor="'red',
shrink=0,
alpha=0.5,
width=0.5))
ax.text(v[0] + 0.4, v[1] - 0.2, f£'S$S{s} x$', fontsize='1l6")
plt.show ()
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In Python, a vector can be represented as a list or tuple, suchas x = (2, 4, 6),butis more commonly represented
as a NumPy array.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax

X = np.ones(3) # Vector of three ones
y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array
X +t vy

2.2. Vectors 23
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2.2.2 Inner Product and Norm

The inner product of vectors x,y € R™ is defined as

n
Ty = Z L3Y;
i=1

Two vectors are called orthogonal if their inner product is zero.

The norm of a vector x represents its “length” (i.e., its distance from the zero vector) and is defined as

1/2
n
1= V&7 = (352)
i=1

The expression ||z — y|| is thought of as the distance between x and y.

Continuing on from the previous example, the inner product and norm can be computed as follows

np.sum(x * vy) # Inner product of x and y, method 1
np.float64(12.0)
x @y # Inner product of x and y, method 2 (preferred)

np.float64(12.0)

The @ operator is preferred because it uses optimized BLAS libraries that implement fused multiply-add operations,
providing better performance and numerical accuracy compared to the separate multiply and sum operations.

np.sqgrt (np.sum(x**2)) # Norm of x, take one
np.float64(1.7320508075688772)

np.sqgrt (x @ x) # Norm of x, take two (preferred)
np.float64(1.7320508075688772)

np.linalg.norm(x) # Norm of x, take three

np.float64(1.7320508075688772)

2.2.3 Span

Given a set of vectors A := {ay, ..., a;} in R™, it's natural to think about the new vectors we can create by performing

linear operations.
New vectors created in this manner are called linear combinations of A.

In particular, y € R™ is a linear combination of A := {ay, ..., a;} if
y = Braq + -+ + Bray, for some scalars 5y, ..., 5,

In this context, the values 3, ..., 5, are called the coefficients of the linear combination.
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The set of linear combinations of A is called the span of A.

The next figure shows the span of A = {a;,a,} in R3.

The span is a two-dimensional plane passing through these two points and the origin.

ax = plt.figure(figsize=(10,
Xx_min, x_max = -5, 5

y_min, y_max = -5, 5

a, B =0.2, 0.1

ax.set (xlim=(x_min,
xticks=(0,),

x_max), ylim=(x_min,
yticks=(0,),

X_max) ,
zticks= (0,

8)) .add_subplot (projection="3d")

zlim=(x_min, x_max),

))

gs = 3

z = np.linspace(x_min, x_max, gs)

X = np.zeros (gs)

y = np.zeros (gs)

ax.plot(x, vy, z, 'k=', lw=2, alpha=0.5)
ax.plot(z, %, y, 'k=-', 1lw=2, alpha=0.5)
ax.plot(y, z, x, 'k=', 1lw=2, alpha=0.5)

# Fixed linear function, to generate a plane

def f(x, y):
return a * x + B * y

# Vector locations, by coordinate

x_coords = np.array ((3, 3))
y_coords = np.array((4, —-4))
z = f(x_coords, y_coords)

for i in (0, 1):

ax.text (x_coords[i], y_coords[i],

# Lines to vectors

for i in (0, 1):
x = (0, x_coords[i])
y = (0, y_coords([i])
z = (0, f(x_coords[i], y_coords[i]))
ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.
# Draw the plane
grid_size = 20
xr2 = np.linspace (x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
X2, y2 = np.meshgrid(xr2, yr2)
z2 = £(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1,

linewidth=0,
plt.show ()

z[1],

cstride=1,
antialiased=True,

f'Sa_{i+1}$', fontsize=14)

6)

cmap=cm. jet,
alpha=0.2)

2.2. Vectors
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Examples

If A contains only one vector a; € R2, then its span is just the scalar multiples of a,, which is the unique line passing

through both a, and the origin.

If A= {e;,e,,e3} consists of the canonical basis vectors of R3, that is

ol el o

then the span of A is all of R3, because, for any z = (x,, x4, z3) € R, we can write
T = Xi€] + Toey + X365

Now consider A, = {e;, eq,e1 + €5}

26
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If y = (Y4, Ys, ys) is any linear combination of these vectors, then y; = 0 (check it).

Hence A, fails to span all of R3.

2.2.4 Linear Independence
As we'll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described
by linear operators on a few vectors.
The condition we need for a set of vectors to have a large span is what’s called linear independence.
In particular, a collection of vectors A := {ay, ..., a;} in R™ is said to be
o linearly dependent if some strict subset of A has the same span as A.
o linearly independent if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent
otherwise.

To illustrate the idea, recall the figure that showed the span of vectors {a, a5} in R as a plane through the origin.
If we take a third vector a5 and form the set {a;, a,, a3}, this set will be

« linearly dependent if a4 lies in the plane

« linearly independent otherwise

As another illustration of the concept, since R™ can be spanned by n vectors (see the discussion of canonical basis vectors
above), any collection of m > n vectors in R” must be linearly dependent.

The following statements are equivalent to linear independence of A := {aq,...,a;,} C R"
1. No vector in A can be formed as a linear combination of the other elements.
2. If Byaq + - Bay, = 0 for scalars B4, ..., By, then 5, = - = 3, = 0.

(The zero in the first expression is the origin of R™)

2.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation
as a linear combination of these vectors.

In other words, if A := {ay,...,a,} C R™ is linearly independent and
y = Pray + - Bray,

then no other coefficient sequence v, ... , y;, will produce the same vector y.

Indeed, if we also have y = v,a; + - y,a;, then

(By —71)ay + -+ (B —y)ap =0

Linear independence now implies ~; = (3, for all .
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2.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.

An n X k matrix is a rectangular array A of numbers with n rows and &k columns:

ap; Qg a1k
A= |G21 @22 Aok
Apy Qpoy o Qg

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this
lecture.

For obvious reasons, the matrix A is also called a vector if eithern = 1 or k = 1.

In the former case, A is called a row vector, while in the latter it is called a column vector.

If n = k, then A is called square.

The matrix formed by replacing a;; by a; for every i and j is called the transpose of A and denoted A" or AT,
If A= A’, then A is called symmetric.

For a square matrix A, the i elements of the form a,, for i = 1, ..., n are called the principal diagonal.

A is called diagonal if the only nonzero entries are on the principal diagonal.

If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then A is called the identity
matrix and denoted by I.

2.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.

Scalar multiplication and addition are immediate generalizations of the vector case:

aip o Qg Y@y ot YAy
YA=~] : : : = : : :
Ap1 o Ay V@py o YA

Gyp A biy o by ay +01; o ay by
S R ) O D T : : :
An1 0 Qpg bnl bnk Gy + bnl Qg+ bnk

In the latter case, the matrices must have the same shape in order for the definition to make sense.

and

A+B=

We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multi-
plication play well with basic linear operations.

If A and B are two matrices, then their product AB is formed by taking as its 7, j-th element the inner product of the
i-th row of A and the j-th column of B.

There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.
If Aisn x kand B is j x m, then to multiply A and B we require £ = j, and the resulting matrix AB is n X m.

As perhaps the most important special case, consider multiplying n x & matrix A and k£ x 1 column vector x.
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According to the preceding rule, this gives us an n x 1 column vector
ayy v Ay | [T a1y + o+

Azx = : : : = : 2.2)
nl 7 Qg T (p Ty + o0+ ATy

© Note

AB and BA are not generally the same thing.

Another important special case is the identity matrix.
You should check that if A isn x k and I is the k x k identity matrix, then Al = A.

If [ is the n X n identity matrix, then /A = A.

2.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix oper-
ations'.

You can create them manually from tuples of tuples (or lists of lists) as follows

A = ((1, 2),
(3, 4))

type (A)

tuple
A = np.array (A)
type (A)

numpy .ndarray
A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more discussion.
To get the transpose of A, use A.transpose () or, more simply, A. T.
There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax

A = np.identity(3)
B np.ones ((3, 3))
2 * A

! Although there is a specialized matrix data type defined in NumPy, it's more standard to work with ordinary NumPy arrays. See this discussion.
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array([[2., 0., 0.1,

array ([[2., 1., 1.1,
[lop Bop dLolly
(1., 1., 2.11)
To multiply matrices we use the @ symbol.

In particular, A @ B is matrix multiplication, whereas A * B is element-by-element multiplication.

See here for more discussion.

2.3.3 Matrices as Maps

Each n x k matrix A can be identified with a function f(z) = Az that maps = € R¥ into y = Az € R™.
These kinds of functions have a special property: they are linear.

A function f: R¥ — R™ is called linear if, for all 2,y € R and all scalars «, 3, we have

flax + By) = af(x) + Bf(y)

You can check that this holds for the function f(x) = Az + b when b is the zero vector and fails when b is nonzero.

In fact, it’s known that f is linear if and only if there exists a matrix A such that f(xz) = Ax for all x.

2.4 Solving Systems of Equations

Recall again the system of equations (2.1).

If we compare (2.1) and (2.2), we see that (2.1) can now be written more conveniently as
y= Az 2.3)

The problem we face is to determine a vector z € R¥ that solves (2.3), taking y and A as given.
This is a special case of a more general problem: Find an x such that y = f(x).

Given an arbitrary function f and a y, is there always an « such that y = f(z)?

If so, is it always unique?

The answer to both these questions is negative, as the next figure shows

def f(x):
return 0.6 * np.cos(4 * x) + 1.4

xmin, xmax = -1, 1
x = np.linspace (xmin, xmax, 160)
y = £(x)

va, yb = np.min(y), np.max(y)
(continues on next page)
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(continued from previous page)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

for ax in axes:
# Set the axes through the origin
for spine in ['left', 'bottom']:
ax.spines[spine] .set_position('zero")
for spine in ['right', 'top']:
ax.spines[spine] .set_color('none')

ax.set (ylim=(-0.6, 3.2), xlim=(xmin, xmax),
yticks=(), xticks=())

ax.plot(x, vy, 'k-', lw=2, label='S$fS$")

ax.fill_between (x, ya, yb, facecolor='blue', alpha=0.05)
ax.vlines ([0], ya, yb, 1lw=3, color='blue', label='range of $f$')
ax.text (0.04, -0.3, '$0$', fontsize=16)

ax = axes|[0]

ax.legend(loc="upper right', frameon=False)

ybar = 1.5

ax.plot(x, x * 0 + ybar, 'k——-', alpha=0.5)

ax.text (0.05, 0.8 * ybar, 'Sy$', fontsize=16)

for i, z in enumerate((-0.35, 0.35)):
ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)
ax.text(z, -0.2, f'Sx _{i}$', fontsize=16)

ax = axes|[1]

ybar = 2.6

ax.plot(x, x * 0 + ybar, 'k——-', alpha=0.5)
(0

ax.text (0.04, 0.91 * ybar, 'Sy$', fontsize=16)

plt.show ()
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—_—

= range of f

X0 0 X1

In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions,
since y lies outside the range of f.

Can we impose conditions on A in (2.3) that rule out these problems?

In this context, the most important thing to recognize about the expression Az is that it corresponds to a linear combination
of the columns of A.

In particular, if aq, ..., a;, are the columns of A, then
Az = zqaq + -+ 104

Hence the range of f(x) = Ax is exactly the span of the columns of A.
We want the range to be large so that it contains arbitrary y.
As you might recall, the condition that we want for the span to be large is linear independence.

A happy fact is that linear independence of the columns of A also gives us uniqueness.
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Indeed, it follows from our earlier discussion thatif {a,, ..., a; } are linearly independentand y = Az = xya;+ 42 a4,
then no z # x satisfies y = Az.

2.4.1 The Square Matrix Case

Let’s discuss some more details, starting with the case where A is n X n.
This is the familiar case where the number of unknowns equals the number of equations.
For arbitrary y € R"™, we hope to find a unique = € R™ such that y = Az.

In view of the observations immediately above, if the columns of A are linearly independent, then their span, and hence
the range of f(z) = A, is all of R™.

Hence there always exists an z such that y = Az.
Moreover, the solution is unique.
In particular, the following are equivalent
1. The columns of A are linearly independent.
2. For any y € R™, the equation y = Ax has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?
If y and A are scalar with A # 0, then the solution is x = A~ 1y.
A similar expression is available in the matrix case.

In particular, if square matrix A has full column rank, then it possesses a multiplicative inverse matrix A~*, with the
property that AA™1 = A 1A =1.

As a consequence, if we pre-multiply both sides of y = Az by A~!, we get x = A~ y.

This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the defer-
minant of the matrix — you can find the expression for it here.

If the determinant of A is not zero, then we say that A is nonsingular.

Perhaps the most important fact about determinants is that A is nonsingular if and only if A is of full column rank.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.
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2.4.2 More Rows than Columns

This is the n x k case with n > k.

This case is very important in many settings, not least in the setting of linear regression (where n is the number of
observations, and & is the number of explanatory variables).

Given arbitrary y € R™, we seek an = € R” such that y = Ax.
In this setting, the existence of a solution is highly unlikely.

Without much loss of generality, let’s go over the intuition focusing on the case where the columns of A are linearly
independent.

It follows that the span of the columns of A is a k-dimensional subspace of R™.

This span is very “unlikely” to contain arbitrary y € R™.

To see why, recall the figure above, where k = 2 and n = 3.

Imagine an arbitrarily chosen i € R?, located somewhere in that three-dimensional space.

What's the likelihood that y lies in the span of {a;, a5} (i.e., the two dimensional plane through these points)?
In a sense, it must be very small, since this plane has zero “thickness”.

As aresult, in the n > k case we usually give up on existence.

However, we can still seek the best approximation, for example, an 2 that makes the distance |y — Az| as small as
possible.

To solve this problem, one can use either calculus or the theory of orthogonal projections.

The solution is known to be & = (A’ A)~! A’y — see for example chapter 3 of these notes.

2.4.3 More Columns than Rows

This is the n X k case with n < k, so there are fewer equations than unknowns.

In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.
For example, consider the case where kK = 3 and n = 2.

Thus, the columns of A consists of 3 vectors in R2.

This set can never be linearly independent, since it is possible to find two vectors that span R?.

(For example, use the canonical basis vectors)

It follows that one column is a linear combination of the other two.

For example, let’s say that a; = aa, + Bas.

Then if y = Az = x,a; + x4a5 + T5a4, We can also write
y = zy(aay + Bag) + 250y + w303 = (2100 + 3)ay + (2,8 + x3)ay

In other words, uniqueness fails.
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2.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s 1 inalg submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code

A= ((1, 2), (3, 4))

A = np.array (A)

y = np.ones((2, 1)) # Column vector

det (A) # Check that A is nonsingular, and hence invertible

np.float64 (-2.0)

A_inv = inv (A) # Compute the inverse
A _inv

array([[-2. , 1.1,
[ 1.5, =-0.511)

x = A_inv @ y # Solution
A @ x # Should equal y

array ([[1.],
[1.11)

solve (A, y) # Produces the same solution

array ([[-1.],
[ 1.1D)
Observe how we can solve for x = A’ly by either via inv (A) @ y,orusing solve (A, y).

The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost
always be preferred.

To obtain the least-squares solution = (A’A) "t A’y, use scipy.linalg.lstsq (A, vy).

2.5 Eigenvalues and Eigenvectors

Let A be an n X n square matrix.

If A is scalar and v is a non-zero vector in R™ such that
Av=)\v

then we say that \ is an eigenvalue of A, and v is an eigenvector.
Thus, an eigenvector of A is a vector such that when the map f(x) = Ax is applied, v is merely scaled.
The next figure shows two eigenvectors (blue arrows) and their images under A (red arrows).

As expected, the image Av of each v is just a scaled version of the original
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A= ((L, 2),

(2, 1))
A = np.array (A)
evals, evecs = eig(A)
evecs = evecs[:, 0], evecs[:, 1]

fig, ax = plt.subplots(figsize=(10,

# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine] .set_position('zero')

for spine in ['right', 'top'l]:

8))

ax.spines[spine].set_color ('none')

ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3

ax.set (xlim=(xmin, xmax), ylim=(ymin,

# Plot each eigenvector
for v in evecs:

ax.annotate('', xy=v, xytext=(0,
arrowprops=dict (facecolor="'blue',

shrink=0,
alpha=0.6,
width=0.5))

# Plot the image of each eigenvector

for v in evecs:
v = A @v

ax.annotate('', xy=v, xytext=(0,
arrowprops=dict (facecolor="'red',

shrink=0,
alpha=0.6,
width=0.5))

# Plot the lines they run through
x = np.linspace (xmin, xmax, 3)
for v in evecs:

a=v[1l] / v[0]

ax.plot(x, a * x, 'b-', 1lw=0.4)

plt.show ()

0),

0),

ymax) )
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The eigenvalue equation is equivalent to (A — AI)v = 0, and this has a nonzero solution v only when the columns of
A — M are linearly dependent.

This in turn is equivalent to stating that the determinant is zero.
Hence to find all eigenvalues, we can look for A such that the determinant of A — AT is zero.
This problem can be expressed as one of solving for the roots of a polynomial in A of degree n.
This in turn implies the existence of n solutions in the complex plane, although some might be repeated.
Some nice facts about the eigenvalues of a square matrix A are as follows
1. The determinant of A equals the product of the eigenvalues.
2. The trace of A (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.
3. If A is symmetric, then all of its eigenvalues are real.
4. If Ais invertible and \,, ..., \,, are its eigenvalues, then the eigenvalues of A~!are 1/, ..., 1/\,,.
A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.

Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

A= ((L, 2),
(z, 1))

(continues on next page)
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(continued from previous page)
A = np.array (A)
evals, evecs = eig(A)
evals

array ([ 3.+0.3, -1.+0.31)
evecs

array([[ 0.70710678, -0.70710678],
[ 0.70710678, 0.7071067811)

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes
the length of each eigenvector to one.

2.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for given matrices A and B, seeks generalized
eigenvalues \ and eigenvectors v such that

Av = \Bv

This can be solved in SciPy via scipy.linalg.eig (A, B).

Of course, if B is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue
problem B! Av = Av, but this is not always the case.

2.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

2.6.1 Series Expansions

|
—
=

|

S
=2
I

Recall the usual summation formula for a geometric progression, which states that if |a| < 1, then Z;o:o a”

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let A be a square matrix, and let

| Al := max [ Az]

lz]=1

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm — in
this case, the so-called spectral norm.

For example, for a square matrix S, the condition |S| < 1 means that S is contractive, in the sense that it pulls all vectors
towards the origin’.

2 Suppose that | S| < 1. Take any nonzero vector x, and let r := |z|. We have |Sz| = r||S(z/r)| < |S| < r = ||z||. Hence every point is
pulled towards the origin.
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Neumann’s Theorem

Let A be a square matrix and let AF := AA*1 with A! := A,
In other words, A* is the k-th power of A.

Neumann’s theorem states the following: If | A¥| < 1 for some k € N, then I — A is invertible, and

(I—A)t=> Ak (2.4)
k=0

Spectral Radius
A result known as Gelfand’s formula tells us that, for any square matrix A,
p(A) = lim [A¥]V/E
k—o0

Here p(A) is the spectral radius, defined as max; |\;

, where { ), }, is the set of eigenvalues of A.

As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a k with
1A% < 1.

In which case (2.4) is valid.

2.6.2 Positive Definite Matrices

Let A be a symmetric n X n matrix.
We say that A is

1. positive definite if ©’ Az > 0 for every z € R™ \ {0}

2. positive semi-definite or nonnegative definite if x’ Ax > 0 for every z € R™
Analogous definitions exist for negative definite and negative semi-definite matrices.

It is notable that if A is positive definite, then all of its eigenvalues are strictly positive, and hence A is invertible (with
positive definite inverse).

2.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let
e z,x and a all be n x 1 vectors
e Abeann x n matrix
e Bbe an m x n matrix and y be an m x 1 vector

Then

2. 2z — A
3. 9AT — (A+ A')x

/
4, 2Bz _ B,
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9y'Bz __ ’
5. S5 =yz

Exercise 2.7.1 below asks you to apply these formulas.

2.6.4 Further Reading

The documentation of the scipy.linalg submodule can be found here.

Chapters 2 and 3 of the Econometric Theory contains a discussion of linear algebra along the same lines as above, with
solved exercises.

If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Jinich, 1994].

2.7 Exercises
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©® Exercise 2.7.1

Let x be a given n x 1 vector and consider the problem
v(z) = max {—y' Py — v Qu}
subject to the linear constraint
y= Az + Bu

Here

e Pisann x n matrix and @) is an m X m matrix

e Aisann X n matrix and B is an n X m matrix

« both P and @) are symmetric and positive semidefinite
(What must the dimensions of y and u be to make this a well-posed problem?)
One way to solve the problem is to form the Lagrangian

L =—y' Py—uQu+ N [Az + Bu — y|

where ) is an n x 1 vector of Lagrange multipliers.

Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions
for maximizing £ with respect to y, v and minimizing it with respect to \.

Show that these conditions imply that
1. A= —-2Py.
2. The optimizing choice of u satisfies u = —(Q + B’PB)~ !B’ P Ax.
3. The function v satisfies v(z) = —z’ Pz where P = A’PA — A’ PB(Q + B'PB)"'B'PA.

As we will see, in economic contexts Lagrange multipliers often are shadow prices.

©® Note

If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and
then just maximize —(Ax + Bu)' P(Az + Bu) — u’Qu with respect to u. You can verify that this leads to the
same maximizer.

© Solution to Exercise 2.7.1

We have an optimization problem:
v(x) = max{—y' Py — v’ Qu}
Y, u
S.t.
y = Az + Bu

with primitives
o P be a symmetric and positive semidefinite n. x n matrix

¢ () be a symmetric and positive semidefinite 7 X m matrix
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e Aann x n matrix
e Bann X m matrix

The associated Lagrangian is:
L=—y'Py—uQu-+ XN[Axz + Bu —y]

Step 1.
Differentiating Lagrangian equation w.r.t y and setting its derivative equal to zero yields

oL

= (P+P)ly—A=-2Py—\=0
3y (P+ Py y :

since P is symmetric.

Accordingly, the first-order condition for maximizing L w.r.t. y implies

A=—2Py
Step 2.
Differentiating Lagrangian equation w.r.t. u and setting its derivative equal to zero yields
8L / / /
5 =—(Q+Q ) )u—B'X=—-2Qu+BX=0
U

Substituting A = —2 Py gives
Qu+ B'Py=0
Substituting the linear constraint y = Ax + Bu into above equation gives
Qu+ B'P(Az + Bu) =0

(Q+ B'’PB)u+ B'PAx =0
which is the first-order condition for maximizing L w.r.t. u.
Thus, the optimal choice of u must satisfy

u=—(Q+ B'PB)"'B'PAz,
which follows from the definition of the first-order conditions for Lagrangian equation.

Step 3.

Rewriting our problem by substituting the constraint into the objective function, we get
v(z) = max{—(Az + Bu)' P(Az 4+ Bu) — v Qu}
Since we know the optimal choice of u satisfies u = —(Q + B’ PB) !B’ P Az, then
v(z) = —(Ax + Bu)'P(Az + Bu) —v'Qu with w=—(Q + B'PB)"'B'PAx

To evaluate the function
v(z) = —(Az + Bu)' P(Az + Bu) — v Qu
=—(2’A" +u'B")P(Az 4+ Bu) — v Qu
= —2'A'PAx — v B’'PAx — v’ A’PBu— u'B’PBu — u'Qu
=—a'A'PAx — 2u'B’PAx — v/ (Q + B’PB)u
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For simplicity, denote by S := (Q + B’PB) !B’ PA, then u = —Sx.
Regarding the second term —2u’ B’ P Az,
—2u'B’PAx = —22'S' B’ PAx
= 2/ A’PB(Q + B'PB)"'B'PAz

Notice that the term (Q + B’ PB)~! is symmetric as both P and Q are symmetric.
Regarding the third term —u’(Q + B’ PB)u,

—u/(Q+ B’PB)u=—x2'5"(Q + B'PB)Sx

— —2/A'PB(Q + B'PB)"'B'PAz

Hence, the summation of second and third terms is 2’ A’ PB(Q + B’PB) !B’ PAx.
This implies that

v(z) = —2'A’PAx — 2u'B’PAx — v (Q + B'PB)u

= —2'A'PAx + 2’ A’PB(Q + B'PB)"'B'PAx
= —a2/[A/PA— A'PB(Q + B'PB)"\B'PAlz

Therefore, the solution to the optimization problem v(xz) = —a’ Pz follows the above result by denoting P =

A'PA— A'PB(Q+ B'PB)"'B'PA

2.7. Exercises
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CHAPTER
THREE

QR DECOMPOSITION

3.1 Overview

This lecture describes the QR decomposition and how it relates to
« Orthogonal projection and least squares
o A Gram-Schmidt process
« Eigenvalues and eigenvectors

We'll write some Python code to help consolidate our understandings.

3.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of
an orthogonal matrix and a triangular matrix.

A QR decomposition of a real matrix A takes the form
A=QR

where
« (@ is an orthogonal matrix (so that Q7'Q = I)
e R is an upper triangular matrix
We'll use a Gram-Schmidt process to compute a QR decomposition

Because doing so is so educational, we’ll write our own Python code to do the job

3.3 Gram-Schmidt process

We'll start with a square matrix A.
If a square matrix A is nonsingular, then a () R factorization is unique.
We'll deal with a rectangular matrix A later.

Actually, our algorithm will work with a rectangular A that is not square.
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3.3.1 Gram-Schmidt process for square A

Here we apply a Gram-Schmidt process to the columns of matrix A.

In particular, let
A:[‘h‘az"“‘an]

Let || - || denote the L2 norm.

The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order
« normalize a vector to have unit norm
« orthogonalize the next vector

To begin, we set u; = a; and then normalize:

Uy
Uy = aq, elzm
1

We orthogonalize first to compute u, and then normalize to create e,:

u
Uy = ay — (ay - €1)eq, €y = m
2

We invite the reader to verify that e; is orthogonal to e, by checking that e; - e; = 0.
The Gram-Schmidt procedure continues iterating.
Thus, for £ = 2, ... ,n — 1 we construct

Uk11
Ugy1 = Qpy1 — (ak+1 cep)ep — o — (ak+1 ‘€€ Crt1 = 7”“]: I
+1

Here (a; - ¢;) can be interpreted as the linear least squares regression coefficient of a; on e,

« itis the inner product of a; and e, divided by the inner product of e, where ¢, -e; = 1, as normalization has assured
us.

« this regression coefficient has an interpretation as being a covariance divided by a variance

It can be verified that

ap € Qg€ - Qp-€g
0 Aoy €y = A €
A:[al‘G’Z"“‘an]:[el‘e2""‘en] ; 252. n:2
0 0 a, - e,
Thus, we have constructed the decomposision
A=QR
where
Q:[al‘CL?‘ ‘an]:[el‘%‘ ‘en}
and
CLl 61 a/2 '61 a 61
n— 0 Qg - €4 a,, - €y
0 0 a :e
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3.3.2 A not square

Now suppose that A is an n X m matrix where m > n.

Then a QR decomposition is

Ay €1 Qp-€ = Ap € Apyy-€p 0 Gyt €

O a .e e a .e a .e e a .e

A:[al‘a2‘...‘am]:[el‘62‘...‘6’”] : 2:2 ) n'2 ’I’L+1. 2 ’I’TL:2
0 O e an . en an+1 . en e am . en

which implies that

ay = (ay - eq)e;

as = (ay - eq)e; + (ag - e3)eq

an = (an ! €1>€1 + (an : 62)62 + et (an ! en>€n

Upi1 = (Apig - €1)eg + (A4 - €2)eq + o+ (a,,q - €,)e,

Ay = (am ! €1>61 + (am : 62)62 + et (a‘m ' en)en

3.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process
described above.

import numpy as np
from scipy.linalg import gr

def QR _Decomposition (A) :
n, m = A.shape # get the shape of A

Q = np.empty((n, n)) # initialize matrix Q
u = np.empty((n, n)) # initialize matrix u
ul:, 0] = A[:, 0]

Q[:, 0] = ul:, 0] / np.linalg.norm(ufl:, 0])

for i in range(l, n):

ul:, 1] = A[:, 1]
for j in range(i):
ul:, i] -= (A[:, 1] @ Q[:, J1)Y * Q[:, J]1 # get each u vector
Q[:, 1] = ul:, 1] / np.linalg.norm(ul:, i]) # compute each e vetor
R = np.zeros((n, m))

for i in range(n):
for j in range (i, m):
R[i, 3] = Al:, J1 @ Q[:, 1i]

return Q, R
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The preceding code is fine but can benefit from some further housekeeping.

We want to do this because later in this notebook we want to compare results from using our homemade code above with
the code for a QR that the Python scipy package delivers.

There can be be sign differences between the () and R matrices produced by different numerical algorithms.

All of these are valid QR decompositions because of how the sign differences cancel out when we compute Q R.

However, to make the results from our homemade function and the QR module in scipy comparable, let’s require that
@ have positive diagonal entries.

We do this by adjusting the signs of the columns in () and the rows in R appropriately.

To accomplish this we’ll define a pair of functions.

def

def

diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D

np.diag(np.sign(np.diag(a)))
return D

adjust_sign(Q, R):

mirrmn
Adjust the signs of the columns in Q and rows in R to
impose positive diagonal of QO

mmn

D = diag_sign(Q)
Qf:y, :] =Q €D
R[ ’ :] =D @R
return Q, R
3.5 Example
Now let’s do an example.
A = np.array([(f2.0, 1.0, 0.0j1, 2.0, 0.0, 12.01, (0.0, 1.0, 1.011)
# A = np.array([([1.0, 0.5, 0.2], [0.5, 0.5, 1.0], [0.0, 1.0, 1.0]])
# A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0]])
A
array ([[1., 1., 0.1,
[1., 0., 1.1,
(0., 1., 1.11)
Q, R = adjust_sign (*QR_Decomposition (A))
Q
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array([[ 0.70710678, -0.40824829, -0.57735027],
[ 0.70710678, 0.40824829, 0.57735027],
[ 0. , —0.81649658, 0.57735027]1])

array ([[ 1.41421356, 0.70710678, 0.707106787,
[ O , —1.22474487, -0.40824829],
[ O. L , 1.1547005411)

Let’s compare outcomes with what the scipy package produces

Q_scipy, R_scipy = adjust_sign(*gr (A))

print ('Our Q: \n', Q)
print ('\n")
print ('Scipy Q: \n', Q_scipy)

Our Q:
[[ 0.70710678 —-0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]]

Scipy Q:

[[ 0.70710678 —-0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]1
print ('Our R: \n', R)
print ('\n")
print ('Scipy R: \n', R_scipy)

Our R:
[[ 1.41421356 0.70710678 0.70710678]
[ 0. -1.22474487 -0.40824829]
[ 0. 0. 1.154700547]]
Scipy R:

[[ 1.41421356 0.70710678 0.70710678]
-1.22474487 -0.40824829]
0. 1.15470054]]

[ O.
[ O.
The above outcomes give us the good news that our homemade function agrees with what scipy produces.
Now let’s do a QR decomposition for a rectangular matrix A that is n x m with m > n.

A = np.array([[1, 3, 4], [2, 0, 91])

Q, R = adjust_sign (*QR_Decomposition (A))
QI R

(array ([ [ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 11]),

(continues on next page)

3.5. Example 49



Intermediate Quantitative Economics with Python

array ([[ 2.23606798, 1.34164079, 9.8386991 1],
[ O. , —2.68328157, 0.4472136 ]11]))

Q_scipy, R_scipy = adjust_sign(*gr (A))
Q_scipy, R_scipy

(array ([ [ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 11),
array ([[ 2.23606798, 1.34164079, 9.8386991 1,
[ O , —2.68328157, 0.4472136 11]))

(continued from previous page)

3.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.

The following iterations on the QR decomposition can be used to compute eigenvalues of a square matrix A.

Here is the algorithm:

1. Set Ay = A and form Ay = Qy R,

Form A; = Q; R, (i.e., form the Q)R decomposition of A;).
Form A, = R;(); and then A, = Q, R, .

A

Iterate to convergence.

Form A; = Ry(Q, . Note that A; is similar to A, (easy to verify) and so has the same eigenvalues.

6. Compute eigenvalues of A and compare them to the diagonal values of the limiting A,, found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!

Let’s write some Python code to try out the algorithm

def QR_eigvals (A, tol=le-12, maxiter=1000) :

"Find the eigenvalues of A using QR decomposition."

A_old = np.copy (A)
A_new = np.copy (A)

diff = np.inf

i=0
while (diff > tol) and (i < maxiter):
A_old[:, :] = A_new

Q, R = QR _Decomposition (A_old)

A_new([:, :] = R @ Q
diff = np.abs(A_new - A_old) .max()
i +=1

eigvals = np.diag(A_new)

return eigvals

Now let’s try the code and compare the results with what scipy.linalg.eigvals gives us

50
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Here goes

# experiment this with one random A matrix
A = np.random.random( (3, 3))

sorted (QR_eigvals (A))

[np.float64(-0.11964443994056032),
np.float64(0.06521477543672663),
np.float64(1.2408668260918192) ]

Compare with the scipy package.

sorted(np.linalg.eigvals (A))

[np.float64(-0.11964443994055932),
np.float64(0.06521477543672673),
np.float64(1.2408668260918199) ]

3.7 QR and PCA

There are interesting connections between the () R decomposition and principal components analysis (PCA).
Here are some.

1. Let X’ be a k x n random matrix where the jth column is a random draw from N (p, X) where p is k x 1 vector
of means and X is a k x k covariance matrix. We want n >> k — this is an “econometrics example”.

2. Form X’ = QR where Q is k x kand Ris k x n.
3. Form the eigenvalues of RR’, i.e., we'll compute RR’ = PAP’.
4. Form X’ X = QPAP’Q’ and compare it with the eigen decomposition X’ X = PAP'.
5. Tt will turn out that that A = A and that P = QP.
Let’s verify conjecture 5 with some Python code.

Start by simulating a random (n, k) matrix X.

k =5

n = 1000

# generate some random moments

u = np.random.random(size=k)

C = np.random.random( (k, k))

¥y =C.T @ C

# X 1s random matrix where each column follows multivariate normal dist.
X = np.random.multivariate_normal (y, %, size=n)

X.shape

(1000, 5)

Let’s apply the QR decomposition to X".
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Q, R = adjust_sign (*QR_Decomposition (X.T))

Check the shapes of @) and R.

Q.shape, R.shape

((5, 5), (5, 1000))
Now we can construct RR’ = PAP’ and form an eigen decomposition.
RR = R @ R.T

A, P_tilde = np.linalg.eigh (RR)
N = np.diag(A)

We can also apply the decomposition to X’ X = PAP'.
XX = X.T @ X

A_hat, P = np.linalg.eigh (XX)
N_hat = np.diag(A_hat)

Compare the eigenvalues that are on the diagonals of A and A.

A, A_hat

(array ([ 11.24739355, 264.66648524, 522.67132354, 904.62565075,
10053.62526399]),

array ([ 11.24739355, 264.66648524, 522.67132354, 904.62565075,
10053.625263991))

Let’s compare P and QP

Again we need to be careful about sign differences between the columns of P and QZB.

QP_tilde = Q @ P_tilde

np.abs (P @ diag_sign(P) - QP_tilde @ diag_sign(QP_tilde)) .max()
np.float64(1.0352829704629585e-14)

Let’s verify that X’ X can be decomposed as Q PAP’ Q'

QPNPQ = Q @ P_tilde @ A @ P_tilde.T @ Q.T
np.abs (QPAPQ — XX) .max ()

np.float64(8.640199666842818e-12)
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FOUR

CIRCULANT MATRICES

4.1 Overview

This lecture describes circulant matrices and some of their properties.
Circulant matrices have a special structure that connects them to useful concepts including
« convolution
« Fourier transforms
 permutation matrices
Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.
We begin by importing some Python packages

import numpy as np
from numba import jit
import matplotlib.pyplot as plt

np.set_printoptions (precision=3, suppress=True)

4.2 Constructing a Circulant Matrix

To construct an N x N circulant matrix, we need only the first row, say,

[Co € C C3 €4 - CN—1]-

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

Co S Cy C3 €4 Cn
CN-1 Co € C €3 = Cn_2
CN—2 Cn-1 ¢ € € = Cn_3
C = : : : : P : “4.1)
Cs €4 Cy Cg Cq; Gy
Coy C3 ¢4 Cy Cg €
L ¢ Cy €3 ¢4 c5 - Ccy |

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first
column needs to be specified.

Let’s write some Python code to generate a circulant matrix.
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@jit
def construct_cirlulant (row) :

N = row.size

C = np.empty ((N, N))

for i in range (N) :

Cl[i, 1:] = row[:N-1i]
Ccli, i] = row[N-i:]
return C
# a simple case when N = 3

construct_cirlulant (np.array([1., 2., 3.1))

array ([[1., 2., 3.1,
[3., 1., 2.1
1

(2., 3., IND)

4.2.1 Some Properties of Circulant Matrices

Here are some useful properties:
Suppose that A and B are both circulant matrices. Then it can be verified that
o The transpose of a circulant matrix is a circulant matrix.
e A+ B is a circulant matrix
o AB is a circulant matrix
« AB=BA

Now consider a circulant matrix with first row

and consider a vector

a=lag a; - ay_]
The convolution of vectors ¢ and a is defined as the vector b = ¢ * a with components
n—1
b = Z Cr—iQ4
i=0
We use * to denote convolution via the calculation described in equation (4.2).

It can be verified that the vector b satisfies
b=CTa

where C7' is the transpose of the circulant matrix defined in equation (4.1).

4.2)
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4.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix.

Before defining a permutation matrix, we’ll define a permutation.

A permutation of a set of the set of non-negative integers {0, 1,2, ...} is a one-to-one mapping of the set into itself.
A permutation of a set {1,2, ..., n} rearranges the n integers in the set.

A permutation matrix is obtained by permuting the rows of an n X n identity matrix according to a permutation of the
numbers 1 to n.

Thus, every row and every column contain precisely a single 1 with O everywhere else.
Every permutation corresponds to a unique permutation matrix.

For example, the N x N matrix

60100 - 0
06 010 - 0
S @3
0000 -1
1000 - 0

serves as a cyclic shift operator that, when applied to an IV x 1 vector h, shifts entries in rows 2 through N up one row
and shifts the entry in row 1 to row .

Eigenvalues of the cyclic shift permutation matrix P defined in equation (4.3) can be computed by constructing

A 1 0 0 - 0
0 A 1 0 -« 0
pa=| " O _:A Lo 0
0 0 0 0 1
1 0 0 0 Y

and solving
det(P— M) = (=1)NMAN —1=0

Eigenvalues \; can be complex.
Magnitudes | A, | of these eigenvalues A, all equal 1.
Thus, singular values of the permutation matrix P defined in equation (4.3) all equal 1.

It can be verified that permutation matrices are orthogonal matrices:

pPp =1
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4.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

@jit
def construct_P (N):

P = np.zeros ((N, N))
for i in range (N-1):
P[i, i+1] = 1

P[-1, 0] =1

return P

P4 = construct_P (4)

P4
array([[0., 1., 0., 0.1,
@y 0oy &y Ocl,
(0., 0., 0., 1.1,
(1., 0., 0., 0.11)

# compute the eigenvalues and eigenvectors
A, Q = np.linalg.eig(P4)

for i in range(4):
print (£'A{i} = {A[i]l:.1f} \nvec{i} = {Q[i, :]1}\n")

A0 = -1.0+0.07
vecO = [-0.5+0.3 0. +#0.55 0. -0.5j —0.5+0.5 ]

Al = 0.0+1.07
vecl = [ 0.540.3 —0.5+0.9 —0.5-0.3 —0.5+0.5]

A2 = 0.0-1.07
[

1
vec2 = [-0.5+0.] 0 =0:87 0o 0859 =0.5F0.9 |

A3 = 1.040.07
vec3 = [ 0.540.3 0.5-0.3 0.5+0.3 —0.5+0.75]
In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.
These eigenvalues are uniformly distributed along the unit circle.
They are the n roots of unity, meaning they are the n numbers 2 that solve 2™ = 1, where z is a complex number.

In particular, the n roots of unity are

2mjk
zzexp(%), k=0,...,N—1

where j denotes the purely imaginary unit number.
fig, ax = plt.subplots (2, 2, figsize=(10, 10))

(continues on next page)
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for i, N in enumerate([3, 4, 6, 8]):
row_1i =1 // 2
col i =1 % 2
P = construct_P (N)
A, Q = np.linalg.eig(P)
circ = plt.Circle((0, 0), radius=1,

ax[row_1i, col_i].add_patch(circ)
for j in range (N) :
ax[row_i, col_i].scatter(A[j].real,

col_1i].set_title(f'N = /N
col_1i].set_xlabel('real')
col_i].set_ylabel ('imaginary'

ax[row_i,
ax[row_1i,
ax[row_i,

")

plt.show ()

edgecolor='b"',

(continued from previous page)

facecolor="None')

c="b'")

Alj] .imag,

)

4.4. Examples with Python
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imaginary

imaginary

1.00 A

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

imaginary

-1.0

T
0.5

T
0.0
real

1.00 A

0.75 1

0.50 4

0.25 1

0.00 1

—0.25 1

—0.50 A

—0.75 A

—1.00

imaginary

For a vector of coefficients {c;

Consider an example in which N = 8 andletw = e

n—1
i=0 »

T
0.0
real

eigenvectors of P are also eigenvectors of

0.5

1.00 4

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

-1.0

T T
—0.5 0.0 0.5 1.0
real
N =

1.00 +

0.75 1

0.50 4

0.25 1

0.00 4

—0.25 1

—0.50 A

—0.75

—1.00

real

C == COI + Cl_P + C2P2 + se + CN71PN71.

—2mj/N

It can be verified that the matrix Fy of eigenvectors of Fy is

[ T S U S S S
S & & & &g &g

The matrix Fy defines a Discete Fourier Transform.

£

N O Otk W N

SERSIRSS

AR

14

—

S
'S

49

g & 8 g &8
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To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by /8.
« stare at the first column of Fg above to convince yourself of this fact
The eigenvalues corresponding to each eigenvector are {w’ }]7:0 in order.

def construct_F (N):

w = np.e ** (-complex (0, 2*np.pi/N))

|
Il

np.ones ((N, N), dtype=complex)
for i in range(l, N):
F[i, 1:] = w ** (i * np.arange(l, N))

return F, w

F8, w = construct_F (8)

w
(0.7071067811865476-0.70710678118654757)
F8
array ([[ 1. +0.7 g 4 +0.7 p d +0.7 g dg +0.7 7
1. +0.3 o 1 +0.7 , 1. +0.3 , 1. +0.3 1l 5
[ 1. +0.73 , 0.707-0.7073, O. -1.3 , —=0.707-0.7077,
=i -0.3 , —0.707+0.7073, -0. +1.7 , 0.707+0.70731,
[ 1. +0.3 ;7 O -1.3 p =g -0.73 7 =0c +1.3 7
1. +0.3 , 0. -1.73 g =g =009 g =0c +1.3 1 g
[ 1. +0.3 , —0.707-0.7073, -0. +1.7 , 0.707-0.7073,
=d. -0.3 , 0.707+0.7073, O. -1.73 , —0.707+0.707731,
[ 1. +0.73 g =d.c -0.3 g o +0.3 p =4 -0.3 7
1. +0.7 g =l -0.7 7 Ao +0.7 p =g -0.7 1 g
[ 1. +0.7 , —0.707+0.7073, O. -1.3 , 0.707+0.7077,
=4, -0.3 , 0.707-0.7073, -0. +1.3 , —0.707-0.70731,
[ 1. +0.3 7z =0 +1.73 7 =g -0.7 , O. =il o 7
1. +0.3 g =0c +1.3 7 =i -0.73 , 0. -1.3 1
[ 1. +0.73 , 0.707+0.7073, -0. +1.3 , —=0.707+0.70773,
=i -0.3 , —0.707-0.7073, O -1.73 , 0.707-0.707311)

# normalize
Q8 = F8 / np.sqgrt (8)

# verify the orthogonality (unitarity)
Q8 @ np.conjugate (Q8)

array([[ 1.+0.j, -0.+0.3, -0.+0.j, -0.+0.3, -0.+0.3, 0.+0.3j, 0.+0.73,
0.+0.31,
[-0.-0.3, 1.+0.3, -0.+0.3, -0.+0.3, -0.+0.3, -0.+0.3, 0.+0.7,
0.+0.31,
[-0.-0.3, -0.-0.35, 1.40.3, -0.+0.3, -0.40.3, -0.+0.3, 0.+0.7,
@oF0c91
[-0.-0.3, -0.-0.3, -0.-0.3, 1.+0.j, -0.+40.3, -0.+0.3, -0.+0.7,
-0.+0.31,
[S0.=0o7p; =0.=0.3,; =0.=0o7p; =0=0c3; LoT@oYy =003, =BorloI),

(continues on next page)
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(continued from previous page)

-0.40.451,

[ 0.-0.§, -0.-0.3, -0.-0.3, -0.-0.9, -0.-0.3, 1.+40.9, -0.+0.7,
-0.40.51,

[ 0.-0.§, 0.-0.3, 0.-0.3, -0.-0.3, -0.-0.3, -0.-0.9, 1.+0.7,
-0.40.51,

[ 0.-0., 0.-0.3, 0.-0.j, -0.-0.3, -0.-0.3, -0.-0.3, -0.-0.7,
1.40.911)

Let’s verify that kth column of Qy is an eigenvector of Py with an eigenvalue w*.

P8 = construct_P (8)

diff_arr = np.empty (8, dtype=complex)

for j in range(8):
diff = P8 @ Q8[:, j] — w ** 3 * Q8[:, 7]
diff_arr[j] = diff @ diff.T

diff _arr

array ([ 0.40.3, -0.+0.3, -0.40.3, -0.+0.3, —-0.40.3, -0.+0.3, —0.+0.7,
-0.+40.31)

4.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix C' defined in equation (4.1) can be written as
C=cyl+c,P+-+c, Pt

and that every eigenvector of P is also an eigenvector of C.

‘We illustrate this for N = 8 case.

c = np.random.random(8)

array([0.104, 0.025, 0.409, 0.789, 0.984, 0.45 , 0.935, 0.992])

C8 = construct_cirlulant (c)
Compute ¢yl + ¢, P+ +c, P L.
N = 8

C = np.zeros ((N, N))
P np.eye (N)

for i in range (N
€ = e[i] *
P =P8 @ P

) 3
P
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¢}
array ([[0.104, 0.025, 0.409,
[0.992, 0.104, 0.025,
[0.935, 0.992, 0.104,
[0.45 , 0.935, 0.992,
[0.984, 0.45 , 0.935,
[0.789, 0.984, 0.45 ,
[0.409, 0.789, 0.984,
[0.025, 0.409, 0.789,
Cc8
array ([[0.104, 0.025, 0.4009,
[0.992, 0.104, 0.025,
[0.935, 0.992, 0.104,
[0.45 , 0.935, 0.992,
[0.984, 0.45 , 0.935,
[0.789, 0.984, 0.45 ,
[0.409, 0.789, 0.984,
[0.025, 0.409, 0.789,

O O O O O O o o

O O O O O O o o

.789,
.4009,
- 029,
.104,
.992,
0 939,

.984,

.789,
.4009,
- 029,
.104,
- 992,
. 935,
.45,
.984,

O O O O O O o o

O O O O O O o o

.984,
o 189y
.409,
.025,
.104,
0 994,
> 985
.45 ,

.984,
.789,
.409,
.025,
.104,
.992,
.935,
.45 ,

O O O O O O o o

O O O O O o o o

.45

.984,
.789,
.409,
- 045,
.104,
0 992
- 985,

.45

14

.984,
.789,
.409,
.025,
.104,
0 992
- 985,

O O O O O O o o

O O O O O o o o

- 988,
.45
.984,
.789,
.4009,
- 028,
.104,
o 992,

0 988,
.45
.984,
.789,
.4009,
- 028,
.104,
o 992,

14

O O O O O o o o
~J
o]
e

O O O O O o o o
~J
[ee]
e

Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

np.abs(C - C8) .max ()

np.float64(0.0)

The kth column of Py associated with eigenvalue w

Z;:O cjwhk.

A_C8 = np.zeros (8, dtype=complex)

for j in range(8):
for k in range (8):
A_C8[j] += clk] * w **

A_CS8

(3

*

k)

k—1

array ([ 4.69 +0.3 , -1.037+0.975 , -0.256+1.3077,

0.177-0.5 , —-0.723+0.0827,

We can verify this by comparing C8 @ Q8 :,

# verify
for j in range(8):

diff = C8 @ Q8[:, j] — A_C8[]]

print (diff)

[-0.40.3 -0.+0.9 -0.40.3 -0
[ 0.-0.§ 0.-0.3 -0.-0.3 -0
[ 0.-0.5 -0.-0.3 -0.-0.5 -0
[ 0.40.§ -0.-0.3 -0.-0.3 O
[ 0.-0.§ -0.-0.3 0.40.3 -0

.+0.
.—0
.+0
.+0.
.—0.

]

-3
-J

]
J

j] withA_C8[7]

* Q81[:
-0.+0.
-0.-0.
0.-0.
-0.-0.
0.-0.

r 71

|
o

.+0.
o0

.+0.
a=0o

| S P VA P W P W R W

* Q8[:

=0, 256=1L. . 3073,

-0.
=il

.+0.
.+0.

.+0.
.—-0.

723-0.0827,

037-0.975

| S P VA P W P W A W

jl.

=0
o0
.+0
=0
=0

+0.7

-0.
+0.

1

-J1
-3

jl
jl

is an eigenvector of Cy associated with an eigenvalue

(continues on next page)
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(continued from previous page)

[ 0.-0.§ 0.-0.§ 0.-0.3 -0.40.3 0.-0.9 0.40.3 -0.40.35 0.-0.7]
[-0.40.9 0.-0.5 0.-0.3 0.40.3 -0.-0.3 0.-0.3 0.-0.3 0.40.7]
[ 0.40.§ -0.-0.5 0.-0.3 0.-0.3 0.-0.3 0.4+0.3 0.40.3 0.40.7]

4.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex
sinusoids.

Consider a sequence of N real number {x; jli o

The Discrete Fourier Transform maps {x;}};! into a sequence of complex numbers { X, } 2"

where
N—1 .
X, = g T, e TR
n=0
def DFT (x):

"The discrete Fourier transform."

N = len(x)
w = np.e ** (—complex (0, 2*np.pi/N))
X = np.zeros (N, dtype=complex)
for k in range (N) :
for n in range(N) :
X[k] += x[n] * w ** (k * n)
return X

Consider the following example.

n=20,1
otherwise

1
xTL:{ /2
0

X = np.zeros (10)
x[0:2] = 1/2
X

array([(0.5, 0.5, 0. , 0., 0., 0., O. , 0., 0., 0. 1)

Apply a discrete Fourier transform.

X = DFT(x)
X
array([ 1. +0.j , 0.905-0.2943, 0.655-0.4763, 0.345-0.4767,
0.095-0.2943, -0.  +0.3 , 0.095+0.294j, 0.345+0.4767,
0.655+0.4763, 0.905+0.2947])
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We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.
def plot_magnitude (x=None, X=None) :

data = []

names = []

xs = []

if (x is not None):
data.append (x)
names.append('x")
xs.append('n')

if (X is not None) :
data.append (X)
names.append ('X")
xs.append('J")

num = len (data)
for i in range (num) :
n = datal[i].size
plt.figure(figsize=(8, 3))
plt.scatter (range(n), np.abs(datal[i]))
plt.vlines (range(n), 0, np.abs(datal[i]), color='b'")

plt.xlabel (xs[i])
plt.ylabel ('magnitude')
plt.title (names([i])
plt.show ()

plot_magnitude (x=x, X=X)

0549 ¢ L

o
w
i

magnitude
=
rJ
1

0.0 L L ] ] @ ] ] ]

B
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magnitude

0.2 1

The inverse Fourier transform transforms a Fourier transform X of = back to .

The inverse Fourier transform is defined as
1 kn
z, = ; NXke%(W)’, n=01,..,N—1

def inverse_ transform(X) :

N = len (X)
w = np.e ** (complex (0, 2*np.pi/N))

x = np.zeros (N, dtype=complex)
for n in range (N):
for k in range (N) :
x[n] 4= X[k] * w ** (k * n) / N

return x
inverse_transform (X)

array([ 0.5+0.j, 0.5-0.3, -0. -0.3, -0. -0.3, -0. -0.3, —-0. —0.3,
-0. +0.3, -0. +0.9, —-0. +0.3, -0. +0.31)

Another example is
=2 <2 11 ) =0,1,2,---19
T, = 2co0s 7T40n , n=20,1,2,

Since N = 20, we cannot use an integer multiple of 2—10 to represent a frequency le(l)'

To handle this, we shall end up using all IV of the availble frequencies in the DFT.

Since 43 is in between 13 and 2 (each of which is an integer multiple of 55), the complex coefficients in the DFT have

their largest magnitudes at k = 5, 6, 15, 16, not just at a single frequency.

N = 20
np.empty (N)

X

(continues on next page)
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(continued from previous page)
for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

X = DFT (x)

plot_magnitude (x=x, X=X)

X
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=
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

What happens if we change the last example to z,, = 2cos (27 3n)?

Note that % is an integer multiple of %.

N = 20
np.empty (N)

X

for j in range (N):
x[j] = 2 * np.cos(2 * np.pi * 10 * j / 40)
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X = DFT (x)

plot_magnitude (x=x, X=X)
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If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix F'y; of eigenvectors of the
permutation matrix Py.

We can use the example where z,, = 2 cos (27‘(%71) , n=0,1,2 19 to illustrate this.

N = 20
x = np.empty (N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)
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array ([ 2. , -0.313, -1.%902, 0.908, 1.618, -1.414, -1.176, 1.782,
0, 6lE, =L.978, =0 , 1.975, -0.e618, -1.782, 1.176, 1.414,
-1.618, -0.908, 1.902, 0.313])

First use the summation formula to transform x to X.

X = DFT (x)
X

array ([2. +0.3 , 2. +0.5583, 2. +1.2183, 2. +2.1745, 2. +4.0877,
2.+12.7853, 2.-12.4663, 2. -3.7515, 2. -1.8013, 2. -0.7787,
2. -0.3 , 2. +0.7783, 2. +1.8019, 2. +3.7513, 2.+12.4667,
2.-12.7853, 2. -4.0873, 2. -2.1745, 2. -1.2183, 2. -0.5583])

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix F}, by the vector x, a product that we claim

should equal the Fourier tranform of the sequence {z,, }-!.
F20, _ = construct_F (20)
F20 @ x
array([2. +0.5 , 2. +0.5589, 2. +1.2185, 2. +2.1743, 2. +4.0877,
2.+12.7859, 2.-12.46653, 2. -3.7513, 2. -1.8013, 2. -0.7787,
2. -0.5 , 2. +0.7783, 2. +1.8013, 2. +3.7519, 2.+12.4667,
2o=lRc 1883, A =4.0873, Ao =B.dT43), &A. =d.2AilBg, 2. =0.85E3])
Similarly, the inverse DFT can be expressed as a inverse DFT matrix Fy'.
F20_inv = np.linalg.inv (F20)
F20_inv @ X
array([ 2. -0.3, -0.313-0.3, -1.902+0.3, 0.908-0.3, 1.618-0.7,

o

-1.414+40.5, -1.176+0.5, 1.782+0.3, 0.618-0.3, -1.975-0.7,
-0. +0.3, 1.975-0.3, -0.618-0.3, —-1.782+0.3, 1.176+0.7,
1.414-0.5, -1.618-0.9, -0.908+0.3, 1.902+0.3, 0.313-0.31)
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CHAPTER
FIVE

SINGULAR VALUE DECOMPOSITION (SVD)

5.1 Overview

The singular value decomposition (SVD) is a work-horse in applications of least squares projection that form founda-
tions for many statistical and machine learning methods.

After defining the SVD, we’ll describe how it connects to
« four fundamental spaces of linear algebra
« under-determined and over-determined least squares regressions
« principal components analysis (PCA)

Like principal components analysis (PCA), DMD can be thought of as a data-reduction procedure that represents salient
patterns by projecting data onto a limited set of factors.

In a sequel to this lecture about Dynamic Mode Decompositions, we'll describe how SVD’s provide ways rapidly to compute
reduced-order approximations to first-order Vector Autoregressions (VARs).

5.2 The Setting

Let X be an m x n matrix of rank p.
Necessarily, p < min(m,n).
In much of this lecture, we'll think of X as a matrix of data in which
« each column is an individual - a time period or person, depending on the application
« each row is a random variable describing an attribute of a time period or a person, depending on the application
We'll be interested in two situations
« A short and fat case in which m << n, so that there are many more columns (individuals) than rows (attributes).
« A tall and skinny case in which m >> n, so that there are many more rows (attributes) than columns (individuals).
We'll apply a singular value decomposition of X in both situations.

In the m << n case in which there are many more individuals n than attributes m, we can calculate sample moments of
a joint distribution by taking averages across observations of functions of the observations.

In this m << n case, we'll look for patterns by using a singular value decomposition to do a principal components
analysis (PCA).

In the m >> n case in which there are many more attributes m than individuals n and when we are in a time-series
setting in which n equals the number of time periods covered in the data set X, we’ll proceed in a different way.
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We'll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD)

5.3 Singular Value Decomposition

A singular value decomposition of an m x n matrix X of rank p < min(m,n) is

X=UxV" 5.1
where
Ut =1 U'U=1
Vvl =1 Viv=I
and

« U is an m x m orthogonal matrix of left singular vectors of X
o Columns of U are eigenvectors of XX "
o Visann x n orthogonal matrix of right singular vectors of X
« Columns of V are eigenvectors of X ' X

+ X is anm X n matrix in which the first p places on its main diagonal are positive numbers o4, 0y, ..., 0, called
singular values; remaining entries of X are all zero

« The p singular values are positive square roots of the eigenvalues of the m x m matrix X X " and also of the n x n
matrix X' X

« We adopt a convention that when U is a complex valued matrix, U ' denotes the conjugate-transpose or
Hermitian-transpose of U, meaning that Ui; is the complex conjugate of U ;.

« Similarly, when V is a complex valued matrix, VT denotes the conjugate-transpose or Hermitian-transpose of
\%

The matrices U, X, V entail linear transformations that reshape in vectors in the following ways:

» multiplying vectors by the unitary matrices U and V rotates them, but leaves angles between vectors and lengths
of vectors unchanged.

« multiplying vectors by the diagonal matrix X leaves angles between vectors unchanged but rescales vectors.

Thus, representation (5.1) asserts that multiplying an n x 1 vector y by the m X n matrix X amounts to performing the
following three multiplications of y sequentially:

« rotating y by computing V' "y

« rescaling V' "y by multiplying it by

« rotating XV "y by multiplying it by U
This structure of the m x n matrix X opens the door to constructing systems of data encoders and decoders.
Thus,

« VTyis an encoder

« ) is an operator to be applied to the encoded data

U is a decoder to be applied to the output from applying operator X to the encoded data
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We'll apply this circle of ideas later in this lecture when we study Dynamic Mode Decomposition.
Road Ahead

What we have described above is called a full SVD.

In a full SVD, the shapes of U, ¥, and V' are (m, m), (m,n), (n, n), respectively.

Later we'll also describe an economy or reduced SVD.

Before we study a reduced SVD we'll say a little more about properties of a full SVD.

5.4 Four Fundamental Subspaces

Let € denote a column space, N denote a null space, and R denote a row space.
Let’s start by recalling the four fundamental subspaces of an m x n matrix X of rank p.

« The column space of X, denoted C(X), is the span of the columns of X, i.e., all vectors y that can be written as
linear combinations of columns of X. Its dimension is p.

« The null space of X, denoted V(.X) consists of all vectors y that satisfy Xy = 0. Its dimension is n — p.

« The row space of X, denoted R(X) is the column space of X '. It consists of all vectors z that can be written as
linear combinations of rows of X. Its dimension is p.

« The left null space of X, denoted V(X T), consist of all vectors z such that X"z = 0. Its dimension is m — p.

For a full SVD of a matrix X, the matrix U of left singular vectors and the matrix V of right singular vectors contain
orthogonal bases for all four subspaces.

They form two pairs of orthogonal subspaces that we’ll describe now.
Let u,;,7 = 1,...,m be the m column vectors of U and let v,,7 = 1, ... ,n be the n column vectors of V.
Let’s write the full SVD of X as
X, 0 T
X=[U, Ug] [ 7 0] Ve Vgl (5.2)

where 3, is a p x p diagonal matrix with the p singular values on the diagonal and

Up=lu - wl, Ugp=lup uy
Vi = [Ul Up] , Up= [Up+1 "'un]
Representation (5.2) implies that
X, 0
X[V, Vgl =[U, Ug [Op O]
or
XV, =U.%
Lo (5.3)
XVp=0
or
Xv, =ou;,, 1=1,...,p 5.4)

Xv, =0, 1=p+1,..,n

Equations (5.4) tell how the transformation X maps a pair of orthonormal vectors v;, v; for i and j both less than or equal

to the rank p of X into a pair of orthonormal vectors u,, u.
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Equations (5.3) assert that

C(X) =cU,)
N(X) =C(Vg)

Taking transposes on both sides of representation (5.2) implies

XTU, Ugl=[Vy Vg FP O]

0 0
or
XU, =V, %
L= LT (5.5)
XTUR == 0
or
X", =0, i=1,...,p
(5.6)

X'u; =0 i=p+1,...,m

Notice how equations (5.6) assert that the transformation X " maps a pair of distinct orthonormal vectors w,, u ; fori and
J both less than or equal to the rank p of X into a pair of distinct orthonormal vectors v;, v; .
Equations (5.5) assert that
RX)=e(XT)=0C(V)
N(XT)=C(Ug)
Thus, taken together, the systems of equations (5.3) and (5.5) describe the four fundamental subspaces of X in the
following ways:

C(X) =C(Uy)
N(XT) =C(Ug)

R(X)=c(XT)=C(Vy) (5.7
N(X) =C(VR)

Since U and V' are both orthonormal matrices, collection (5.7) asserts that
» U, is an orthonormal basis for the column space of X
o Up, is an orthonormal basis for the null space of X
 V} is an orthonormal basis for the row space of X
o Vg is an orthonormal basis for the null space of X

We have verified the four claims in (5.7) simply by performing the multiplications called for by the right side of (5.2) and
reading them.

The claims in (5.7) and the fact that U and V' are both unitary (i.e, orthonormal) matrices imply that
« the column space of X is orthogonal to the null space of X "
« the null space of X is orthogonal to the row space of X
Sometimes these properties are described with the following two pairs of orthogonal complement subspaces:
 C(X) is the orthogonal complement of N (X T)
o R(X) is the orthogonal complement NV (X)

Let’s do an example.
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import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt

Having imported these modules, let’s do the example.
np.set_printoptions (precision=2)

# Define the matrix

A = np.array([[1, 2, 3, 4, 51,
[2, 3, 4, 5, 6],
3, 4, 5, 6, 71,
[4, 5, 6, 7, 8],
[5, 6, 7, 8, 911)

’

~
~

# Compute the SVD of the matrix
U, S, V = np.linalg.svd(A,full_matrices=True)

# Compute the rank of the matrix
rank = np.linalg.matrix_rank (A)

# Print the rank of the matrix
print ("Rank of matrix:\n", rank)
print ("S: \n", S)

# Compute the four fundamental subspaces
row_space = U[:, :rank]

col_space = V[:, :rank]

null_space = V[:, rank:]

left_null_space = U[:, rank:]

print ("U:\n", U)

print ("Column space:\n", col_space)
print ("Left null space:\n", left_null_space)
("V.T:\n", V.T)

print ("Row space:\n", row_space.T)

("Right null space:\n", null_space.T)

print

print

Rank of matrix:

2
SE

[2.69e+01 1.86e+00 1.20e-15 2.24e-16 5.82e-17]
U
[-0.27 -0.73 0.63 -0.06 0.06]
-0.35 -0.42 -0.69 -0.45 0.12]
-0.43 -0.11 -0.24 0.85 0.12]
-0.51 0.19 0.06 -0.1 -0.83]
[-0.59 0.5 0.25 -0.24 0.53]
Column space:

[
[
[
[

]

[[=0.27 =0.39]

[ 0.73 0.42]
0.82 =0,65]
0.54 -0.39]
0.06 -0.35]]

[
[
[_
Left null space:

[[ 0.63 -0.06 0.06]

(continues on next page)
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(continued from previous page)

0.69 -0.45 0.12
0.24 0.85 0.12
0,06 =0.d =083
0.25 -0.24 0.53

-0.27 0.73 0.32 0.54 -0.06]
0.35 0.42 -0.65 -0.39 -0.35]
0.43 0.11 0.02 -0.29 0.85]

-0.51 -0.19 0.61 -0.41 -0.4 ]
0.59 -0.5 -0.31 0.55 -0.04]

Row space:

[[=0.287 =088 =048 =091 =0,59]
[-0.73 -0.42 -0.11 0.19 0.5 1]

Right null space:

[[-0.43 0.11 0.02 -0.29 0.85]
[-0.51 -0.19 0.61 -0.41 -0.4 ]
[-0.59 -0.5 -0.31 0.55 -0.047]]

]

5.5 Eckart-Young Theorem

Suppose that we want to construct the best rank r approximation of an m x n matrix X.

By best, we mean a matrix X,. of rank r < p that, among all rank r matrices, minimizes
[[X — X, ||

where || - || denotes a norm of a matrix X and where X, belongs to the space of all rank r matrices of dimension m X n.

Three popular matrix norms of an m x n matrix X can be expressed in terms of the singular values of X

+ the spectral or [* norm || X|[, = max, o Hﬁ;ﬂ” =0
+ the Frobenius norm || X||p = /0] 4 - + 02

« the nuclear norm || X||y =0y + - + 0,

The Eckart-Young theorem states that for each of these three norms, same rank r matrix is best and that it equals
X, = o, U\ VT + 0yU, V| + -4 0,U, VT (5.8)
This is a very powerful theorem that says that we can take our m x n matrix X that in not full rank, and we can best

approximate it by a full rank p x p matrix through the SVD.

Moreover, if some of these p singular values carry more information than others, and if we want to have the most amount
of information with the least amount of data, we can take r leading singular values ordered by magnitude.

We'll say more about this later when we present Principal Component Analysis.
You can read about the Eckart-Young theorem and some of its uses here.

We'll make use of this theorem when we discuss principal components analysis (PCA) and also dynamic mode decom-
position (DMD).
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5.6 Full and Reduced SVD’s

Up to now we have described properties of a full SVD in which shapes of U, 3, and V' are (m,m), (m,n), (n,n),
respectively.

There is an alternative bookkeeping convention called an economy or reduced SVD in which the shapes of U, ¥ and V'
are different from what they are in a full SVD.

Thus, note that because we assume that X has rank p, there are only p nonzero singular values, where p = rank(X) <
min (m, n).

A reduced SVD uses this fact to express U, X, and V' as matrices with shapes (m, p), (p,p), (n, p).
You can read about reduced and full SVD here https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
For a full SVD,
Uu' =1 U'U=1
Vv =1 ViV =I
But not all these properties hold for a reduced SVD.
Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.
« In a tall-skinny case in which m >> n, for a reduced SVD
UUT +1 U'U=1
Vv =1 ViV =I
« In a short-fat case in which m << n, for a reduced SVD
Uu' =1 U'U=1
Vv =1 VIV £T

When we study Dynamic Mode Decomposition below, we shall want to remember these properties when we use a reduced
SVD to compute some DMD representations.

Let’s do an exercise to compare full and reduced SVD’s.
To review,
 ina full SVD
-Uismxm
- XYismxn
- Visnxn
« in areduced SVD
-Uismxp
- XispXp
- Visnxp
First, let’s study a case in whichm =5 > n = 2.

(This is a small example of the tall-skinny case that will concern us when we study Dynamic Mode Decompositions
below.)
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import numpy as np

X = np.random.rand(5,2)

U, S, V = np.linalg.svd (X, full_matrices=True) # full SVD

Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V =")

U, 8, ¥
u, S, V=
(array([[-0.43, -0.12, -0.3 , -0.57, -0.62],
[-0.44, -0.74, 0.23, 0.45, -0.08],
[-0.25, 0.3, 0.89, -0.22, -0.11],
[-0.47, 0.59, -0.22, 0.58, -0.22],
[-0.58, 0.04, -0.15, -0.29, 0.7411),
array ([2.11, 0.541]),
array ([[-0.81, -0.58],
[-0.58, 0.8111))
print ('Uhat, Shat, Vhat = ')

Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[-0.43, -0.12],
[-0.44, -0.74],
[-0.25, 0.3 1,
[-0.47, 0.59],
[-0.58, 0.0411),
array ([2.11, 0.54]),
array ([[-0.81, -0.58],
[-0.58, 0.8111))
rr = np.linalg.matrix_rank (X)
print (f'rank of X = {rr}')

rank of X = 2

Properties:
o Where U is constructed viaa full SVD, U'U = [, ., andUU" =1,

« Where U is constructed via a reduced SVD, although U0 = it happens that oo *1um

PXP’

We illustrate these properties for our example with the following code cells.

UTU = U.TQU

UUT = UQU.T

print ('UUT, UTU = ')
UuT, UTU

uuT, UTU =

(array ([[ 1.00e+00, -1.74e-16, 5.91e-17, 8.43e-18, -4.82e-17],

[-1.74e-16, 1.00e+00, -4.76e-17, -7.27e-17, -1.14e-16],

[ 5.91e-17, -4.76e-17, 1.00e+00, -5.08e-17, -2.05e-17],
(continues on next page)
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(continued from previous page)

[ 8.43e-18, -7.27e-17, -5.08e-17, 1.00e+00, -6.49e-17],
[-4.82e-17, -1.14e-16, -2.05e-17, -6.49e-17, 1.00e+00]11]),
array ([[ 1.00e+00, 1.23e-17, 4.27e-18, 2.50e-17, 6.01e-171,
[ 1.23e-17, 1.00e+00, -1.06e-16, -1.23e-16, -4.22e-17],
[ 4.27e-18, -1.06e-16, 1.00e+00, 8.14e-17, 2.38e-17],
[ 2.50e-17, -1.23e-16, 8.14e-17, 1.00e+00, 2.01le-17],
[ 6.01le-17, -4.22e-17, 2.38e-17, 2.01le-17, 1.00e+00]11]))
UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.T@Uhat
print ('UhatUhatT, UhatTUhat= ')
UhatUhatT, UhatTUhat
UhatUhatT, UhatTUhat=
(array([[ 0.2 , 0.28, 0.07, 0.13, 0.25],
[ 0.28, 0.74, -0.11, -0.23, 0.23],
[ 0.07, -0.11, 0.15, 0.29, 0.16],
[ 0.13, -0.23, 0.29, 0.57, 0.3 1,
[ 0.25, 0.23, 0.16, 0.3, 0.34101),
array ([[1.00e+00, 1.23e-17],
[1.23e-17, 1.00e+0011))
Remarks:

The cells above illustrate the application of the full matrices=True and full_matrices=False options.
Using full _matrices=False returns a reduced singular value decomposition.

The full and reduced SVD’s both accurately decompose an m x n matrix X

When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties
of full and reduced SVD’s in such tall-skinny cases.

Now let’s turn to a short-fat case.

To illustrate this case, we'll set m = 2 < 5 = n and compute both full and reduced SVD’s.

import numpy as np

X = np.random.rand(2,5)

U, S, V = np.linalg.svd (X, full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V. =")

U, 8, V

u, S, V=

(array ([[ 0.79, -0.62]

o~

[ 0.62, 0.7911),

array ([1.59, 0.49]),

array([[ 0.76, 0.12, 0.24, 0.58, 0.117],
[ 0.04, 0.05, 0.9, -0.43, -0.02],
[-0.12, -0.94, 0.18, 0.27, -0. 1,
[-0.63, 0.32, 0.31, 0.64, -0.04],
[-0.11, -0 , 0. , -0.04, 0.9911))
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print ('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[ 0.79, -0.62],
[ 0.62, 0.7911),
array ([1.59, 0.49]),
array([[ 0.76, 0.12, 0.24, 0.58, 0.11],
[ 0.04, 0.05, 0.9, -0.43, -0.0211))

Let’s verify that our reduced SVD accurately represents X

SShat=np.diag(Shat)
np.allclose (X, Uhat@SShat@Vhat)

True

5.7 Polar Decomposition

A reduced singular value decomposition (SVD) of X is related to a polar decomposition of X

X =5Q
where
S=UxU"
Q=U0vV"T
Here

e Sisanm x m symmetric matrix

e @ is an m x n orthogonal matrix
and in our reduced SVD

e U isanm x p orthonormal matrix

e Yisap X p diagonal matrix

e Visann x p orthonormal

5.8 Application: Principal Components Analysis (PCA)

Let’s begin with a case in which n >> m, so that we have many more individuals n than attributes m.

The matrix X is short and fat in an n >> m case as opposed to a tall and skinny case with m >> n to be discussed
later.

We regard X as an m x n matrix of data:

X:[X1|X2|"'|Xn]
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Ty, X
. Lo j . . . X 2

where for j =1, ..., n the column vector X ; = “J | is a vector of observations on variables | .
T mj X m

In a time series setting, we would think of columns j as indexing different times at which random variables are observed,
while rows index different random variables.

In a cross-section setting, we would think of columns j as indexing different individuals for which random variables are
observed, while rows index different attributes.

As we have seen before, the SVD is a way to decompose a matrix into useful components, just like polar decomposition,
eigendecomposition, and many others.

PCA, on the other hand, is a method that builds on the SVD to analyze data. The goal is to apply certain steps, to help
better visualize patterns in data, using statistical tools to capture the most important patterns in data.

Step 1: Standardize the data:
Because our data matrix may hold variables of different units and scales, we first need to standardize the data.

First by computing the average of each row of X.

_ 13
X, =— T;;
n <~
We then create an average matrix out of these means:
X
X=X e
X,

m

And subtract out of the original matrix to create a mean centered matrix:
B=X-X

Step 2: Compute the covariance matrix:

Then because we want to extract the relationships between variables rather than just their magnitude, in other words, we
want to know how they can explain each other, we compute the covariance matrix of B.

C= lBBT
n

Step 3: Decompose the covariance matrix and arrange the singular values:

Since the matrix C' is positive definite, we can eigendecompose it, find its eigenvalues, and rearrange the eigenvalue and
eigenvector matrices in a decreasing order.

The eigendecomposition of C' can be found by decomposing B instead. Since B is not a square matrix, we obtain an
SVD of B:

BBT =UxvV(UZVT)T
=UxvVTveTuT
=Usx’UT

1 TrrT
C=-UXx2'U
n

We can then rearrange the columns in the matrices U and ¥ so that the singular values are in decreasing order.
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Step 4: Select singular values, (optional) truncate the rest:

We can now decide how many singular values to pick, based on how much variance you want to retain. (e.g., retaining
95% of the total variance).

We can obtain the percentage by calculating the variance contained in the leading r factors divided by the variance in
total:

Step 5: Create the Score Matrix:

=UX

5.9 Relationship of PCA to SVD

To relate an SVD to a PCA of data set X, first construct the SVD of the data matrix X:

Let’s assume that sample means of all variables are zero, so we don’t need to standardize our matrix.
X =UsV" =0 UV} + 0,0,V + - +0,U,V,, (5.9)
where
U= [U,|Uy]...|U,]

v’
VT — Vv2T
el

In equation (5.9), each of the m x n matrices U; VjT is evidently of rank 1.

Thus, we have

Uiy V1T U 12V2T Ulp VpT
T T

X L N L O N LA (5.10)
Uml ‘/1T Um2 VZT Ump ‘/pT

Here is how we would interpret the objects in the matrix equation (5.10) in a time series context:

o foreach k =1, ..., n, the object {ij J—1 is a time series for the kth principal component

k =1,...,m1is a vector of loadings of variables X, on the kth principal component, ¢ = 1,...,m

o 0, foreach k = 1, ..., p is the strength of kth principal component, where strength means contribution to the
overall covariance of X.
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5.10 PCA with Eigenvalues and Eigenvectors

We now use an eigen decomposition of a sample covariance matrix to do PCA.
Let X,,,, be our m x n data matrix.

Let’s assume that sample means of all variables are zero.

We can assure this by pre-processing the data by subtracting sample means.

Define a sample covariance matrix {2 as
Q=XXT

Then use an eigen decomposition to represent €2 as follows:

Q= PAPT
Here
o Pism x m matrix of eigenvectors of €2
« A is a diagonal matrix of eigenvalues of (2
We can then represent X as
X = Pe
where
e=P1'X
and
e’ = A.
We can verify that
XXT = PAPT. (5.11)
It follows that we can represent the data matrix X as
€1
X = [X,Xo] | X,] = [PiIPs] o [Po] | 2| = Prey + Pyey + oo + Pe,
6’m

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that

2y — 2
ej—)\j_a].

~ € . . . ~ NT _
Now define ¢ = \/;\7, which implies that €j€; = 1.

Therefore

X = \/Xplgl + \/gp2€2 +o+ V )‘mpme:n

=0,P &+ 0,Pyé5 + ... + 0, P €,
which agrees with
X =0 UV, + 0,0V, + . 40,0V,

provided that we set
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« U; = P; (a vector of loadings of variables on principal component ;)

. VkT = €, (the kth principal component)

Because there are alternative algorithms for computing P and U for given a data matrix X, depending on algorithms
used, we might have sign differences or different orders of eigenvectors.

We can resolve such ambiguities about U and P by
1. sorting eigenvalues and singular values in descending order

2. imposing positive diagonals on P and U and adjusting signs in V' T accordingly

5.11 Connections

To pull things together, it is useful to assemble and compare some formulas presented above.

First, consider an SVD of an m X n matrix:
X=UxVT
Compute:

XXT=U0zvVveTuT
=USyTUT (5.12)
=UAUT

Compare representation (5.12) with equation (5.11) above.
Evidently, U in the SVD is the matrix P of eigenvectors of XX " and XX is the matrix A of eigenvalues.

Second, let’s compute

X'X=vy'uluzv’
=Vvyisv’

Thus, the matrix V in the SVD is the matrix of eigenvectors of X X

Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix
XXT = PAPT

where P is an orthogonal matrix.

Further, from the SVD of X, we know that
XXT=UuxxTUuT

where U is an orthogonal matrix.

Thus, P = U and we have the representation of X
X=Pe=UXVT
It follows that

UTX=XVT=¢
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Note that the preceding implies that
el =TVTVRT =0T = A,
so that everything fits together.
Below we define a class DecomAnalysis that wraps PCA and SVD for a given a data matrix X.

class DecomBAnalysis:
mrirn
A class for conducting PCA and SVD.
X: data matrix

r_component: chosen rank for best approximation
mrirn

def _ _init__ (self, X, r_component=None) :

self.X X
self.Q = (X @ X.T)

self.m, self.n = X.shape
self.r = LA.matrix_rank (X)

if r_component:
self.r_component = r_component
else:
self.r_component = self.m
def pca(self):
A, P = LA.eigh(self.Q) # columns of P are eigenvectors
ind = sorted(range(A.size), key=lambda x: A[x], reverse=True)
# sort by eigenvalues
self.A = Alind]
P = P[:, ind]
self.P = P @ diag_sign(P)
self.N = np.diag(self.A)

self.explained_ratio_pca = np.cumsum(self.A) / self.A.sum()

# compute the N by T matrix of principal components
self.e = self.P.T @ self.X

P = self.P[:, :self.r_component]
€ = self.e[:self.r_component, :]

# transform data
self.X_pca = P @ ¢

def svd(self):
U, o, VI = LA.svd(self.X)

ind = sorted(range(o.size), key=lambda x: o[x], reverse=True)

(continues on next page)
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# sort by eigenvalues

d = min(self.m, self.n)

self.o = ol[ind]

U = U[:, ind]

D = diag_sign (U)

self.U =U @ D

VT[:d, :]1] =D @ VT[ind, :]

self.VT = VT

self.¥ = np.zeros((self.m, self.n))
self.Z[:d, :d] = np.diag(self.o)
o_sq = self.o ** 2

self.explained_ratio_svd =

np.cumsum(o_sq)

(continued from previous page)

/ o_sqg.sum/()

# slicing matrices by the number of components to use

U = self.U[:, :self.r_component]
L = self.Z[:self.r_component,
VT = self.VT[:self.r_component, :]

# transform data
self.X_svd = U @ & @ VT

def fit(self, r_component):
# pca
P = self.P[:, :r_component]
€ = self.e[:r_component, :]

# transform data

:self.r_component]

self.X_pca = P @ ¢

# svd

U = self.U[:, :r_component]

Y = self.¥[:r_component, :r_component]

VT = self.VT[:r_component, :]

# transform data
self.X_ svd = U @ & @ VT

def diag_sign (A):

"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

return D

We also define a function that prints out information so that we can compare decompositions obtained by different algo-

rithms.

def compare_pca_svd(da) :
mirrmn

Compare the outcomes of PCA and SVD.

mmn

da.pca/()

(continues on next page)
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da.svd()

(continued from previous page)

print ('Eigenvalues and Singular values\n')

print (f'A = {da.A}\n'")
print (f'c”2 = {da.oc**2}\n"')
print ('\n"')

# loading matrices

fig, axs = plt.subplots(l, 2, figsize=(14, 5))

plt.suptitle('loadings"')
axs[0] .plot(da.P.T)

0] .set_title('P")

0] .set_xlabel('m")
1] .plot(da.U.T)
axs[1l].set_title('U")
axs[1l].set_xlabel('m")
plt.show ()

axs
axs
axs

[
[
[
[
[
[

# principal components

fig, axs = plt.subplots(l, 2, figsize=(14, 5))

plt.suptitle('principal components')

axs[0] .plot(da.e.T)

axs[0] .set_title('e")

axs[0] .set_xlabel('n'")

axs[l].plot(da.VT[:da.r, :].T * np.sgrt(da.A))

axs[1].set_title(r'sVv~\top *\sqgrt{\lambda}$"')
[

axs[1l].set_xlabel('n'")
plt.show ()

5.12 Exercises

© Exercise 5.12.1

very close to zero).

SO wWe can compute B with it.

In Ordinary Least Squares (OLS), we learn to compute B = (XTX) 1 X Ty, but there are cases such as when we
have colinearity or an underdetermined system: short fat matrix.

In these cases, the (X T X)) matrix is not not invertible (its determinant is zero) or ill-conditioned (its determinant is

What we can do instead is to create what is called a pseudoinverse, a full rank approximation of the inverted matrix

Thinking in terms of the Eckart-Young theorem, build the pseudoinverse matrix X+ and use it to compute B

© Solution to Exercise 5.12.1

We can use SVD to compute the pseudoinverse:

X=UxVT

5.12. Exercises
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inverting X, we have:

Xt=vxtyuT
where:
- 0 0 0
o L 0 0
Xt = 3 I
0 L0
P
0 0 0 0
and finally:

B=Xty=VEtUTy

For an example PCA applied to analyzing the structure of intelligence tests see this lecture Multivariable Normal Distri-
bution.

Look at parts of that lecture that describe and illustrate the classic factor analysis model.

As mentioned earlier, in a sequel to this lecture about Dynamic Mode Decompositions, we'll describe how SVD’s provide
ways rapidly to compute reduced-order approximations to first-order Vector Autoregressions (VARS).
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SIX

VARS AND DMDS

This lecture applies computational methods that we learned about in this lecture Singular Value Decomposition to
« first-order vector autoregressions (VARS)
o dynamic mode decompositions (DMDs)

« connections between DMDs and first-order VARs

6.1 First-Order Vector Autoregressions

We want to fit a first-order vector autoregression
X1 =AX, +Ceyq, €1 L X, 6.1)
where ¢, ; is the time ¢ + 1 component of a sequence of i.i.d. m x 1 random vectors with mean vector zero and identity

covariance matrix and where the m x 1 vector X, is

T

Xt:[Xl,t Xop - Xm,f,] (6.2)

and where - again denotes complex transposition and X ;¢ 18 variable 7 at time .
We want to fit equation (6.1).

Our data are organized in an m x (n + 1) matrix X
X =[Xy [ Xy [+ [ X | Xy

where fort = 1,...,n + 1, the m x 1 vector X, is given by (6.2).

Thus, we want to estimate a system (6.1) that consists of m least squares regressions of everything on one lagged value
of everything.

The i’th equation of (6.1) is a regression of X, , ., on the vector X,.
We proceed as follows.

From X , we form two m X n matrices
X=[X | X5 | ]X,]
and
X' = [X2 | X || Xn+1}

Here ’ is part of the name of the matrix X’ and does not indicate matrix transposition.
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We use - to denote matrix transposition or its extension to complex matrices.

In forming X and X’, we have in each case dropped a column from X , the last column in the case of X, and the first
column in the case of X”.

Evidently, X and X’ are both m x n matrices.

We denote the rank of X as p < min(m,n).

Two cases that interest us are
e n >> m, so that we have many more time series observations n than variables m
e m >> n, so that we have many more variables m than time series observations n

At a general level that includes both of these special cases, a common formula describes the least squares estimator Aof
A.

But important details differ.

The common formula is
A=X'X* (6.3)

where X is the pseudo-inverse of X.

To read about the Moore-Penrose pseudo-inverse please see Moore-Penrose pseudo-inverse
Applicable formulas for the pseudo-inverse differ for our two cases.

Short-Fat Case:

When n >> m, so that we have many more time series observations 7 than variables m and when X has linearly
independent rows, X X | has an inverse and the pseudo-inverse X is

Xt = XT<XXT)—1

Here X is a right-inverse that verifies XX+ =1 _ .

In this case, our formula (6.3) for the least-squares estimator of the population matrix of regression coefficients A becomes
A=X'XT(XXT)! (6.4)

This formula for least-squares regression coefficients is widely used in econometrics.
It is used to estimate vector autorgressions.

The right side of formula (6.4) is proportional to the empirical cross second moment matrix of X, ,; and X, times the
inverse of the second moment matrix of X,.

Tall-Skinny Case:

When m >> n, so that we have many more attributes m than time series observations 7 and when X has linearly
independent columns, X " X has an inverse and the pseudo-inverse X+ is

Xt =(X"X)xT

Here X is a left-inverse that verifies X*X =1 .

In this case, our formula (6.3) for a least-squares estimator of A becomes
A=X/(XTX)'xT (6.5)

Please compare formulas (6.4) and (6.5) for A.
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Here we are especially interested in formula (6.5).

The ith row of A is an m X 1 vector of regression coefficients of X; ; ; on X;;,j=1,...,m.

If we use formula (6.5) to calculate AX we find that
AX =X’
so that the regression equation fits perfectly.

This is a typical outcome in an underdetermined least-squares model.

To reiterate, in the tall-skinny case (described in Singular Value Decomposition) in which we have a number n of obser-
vations that is small relative to the number m of attributes that appear in the vector X,, we want to fit equation (6.1).

We confront the facts that the least squares estimator is underdetermined and that the regression equation fits perfectly.
To proceed, we'll want efficiently to calculate the pseudo-inverse X .
The pseudo-inverse X+ will be a component of our estimator of A.

As our estimator A of A we want to form an 1 x m matrix that solves the least-squares best-fit problem
A = argmin ;|| X" — AX|| ¢ (6.6)

where || - || » denotes the Frobenius (or Euclidean) norm of a matrix.

1A = [ DD 1A,
i=1 j=1

The minimizer of the right side of equation (6.6) is

The Frobenius norm is defined as

A=Xx'X* (6.7)
where the (possibly huge) n x m matrix X* = (X" X)X is again a pseudo-inverse of X.

For some situations that we are interested in, X ' X can be close to singular, a situation that makes some numerical
algorithms be inaccurate.

To acknowledge that possibility, we’ll use efficient algorithms to constructing a reduced-rank approximation of Ain
formula (6.5).

Such an approximation to our vector autoregression will no longer fit perfectly.

The ith row of A is an m x 1 vector of regression coefficients of X; , ., on X

g = 1,....m.

An efficient way to compute the pseudo-inverse X is to start with a singular value decomposition
X=UxvVT (6.8)
where we remind ourselves that for a reduced SVD, X is an m x n matrix of data, U is an m X p matrix, X isap X p
matrix, and V' is an n X p matrix.
We can efficiently construct the pertinent pseudo-inverse Xt by recognizing the following string of equalities.
Xt =(XTX)'xT

= (vxu'uzvhH-lvsuT’

= (Vv hH-lvxuT’ (6.9)

=V iy lvivyu’

=V U’
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(Since we are in the m >> n case in which V'V = [ pxp inareduced SVD, we can use the preceding string of equalities
for a reduced SVD as well as for a full SVD.)

Thus, we shall construct a pseudo-inverse X+ of X by using a singular value decomposition of X in equation (6.8) to
compute

Xt=vy U’ (6.10)
where the matrix X! is constructed by replacing each non-zero element of ¥ with a;l.

We can use formula (6.10) together with formula (6.7) to compute the matrix Aof regression coefficients.

Thus, our estimator A = X’ X of the m x m matrix of coefficients A is

A=XxVelyT 6.11)

6.2 Dynamic Mode Decomposition (DMD)

We turn to the m >> n tall and skinny case associated with Dynamic Mode Decomposition.

Here an m x n + 1 data matrix X contains many more attributes (or variables) m than time periods n + 1.
Dynamic mode decomposition was introduced by [Schmid, 2010],

You can read about Dynamic Mode Decomposition [Kutz ef al., 2016] and [Brunton and Kutz, 2019] (section 7.2).

Dynamic Mode Decomposition (DMD) computes a rank r < p approximation to the least squares regression coefficients
A described by formula (6.11).

We'll build up gradually to a formulation that is useful in applications.

We'll do this by describing three alternative representations of our first-order linear dynamic system, i.e., our vector
autoregression.

Guide to three representations: In practice, we’ll mainly be interested in Representation 3.

We use the first two representations to present some useful intermediate steps that help us to appreciate what is under the
hood of Representation 3.

In applications, we'll use only a small subset of DMD modes to approximate dynamics.
We use such a small subset of DMD modes to construct a reduced-rank approximation to A.

To do that, we'll want to use the reduced SVD?s affiliated with representation 3, not the full SVD’s affiliated with repre-
sentations 1 and 2.

Guide to impatient reader: In our applications, we’ll be using Representation 3.

You might want to skip the stage-setting representations 1 and 2 on first reading.

6.3 Representation 1

In this representation, we shall use a full SVD of X.

We use the m columns of U, and thus the m rows of U, to define a m x 1 vector 7% as

b, =U"X,. (6.12)
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The original data X, can be represented as
X, = Ub, (6.13)

(Here we use b to remind ourselves that we are creating a basis vector.)
Since we are now using a full SVD, UU T =1, ..
So it follows from equation (6.12) that we can reconstruct X, from Zt.
In particular,

» Equation (6.12) serves as an encoder that rotates the m x 1 vector X, to become an m X 1 vector 7)t

« Equation (6.13) serves as a decoder that reconstructs the m x 1 vector X, by rotating the m x 1 vector 7%

Define a transition matrix for an m x 1 basis vector Bt by

A=UTAU (6.14)
We can recover A from

A=UAUT
Dynamics of the m x 1 basis vector 7)t are governed by

gt+1 = I‘Et

To construct forecasts X, of future values of X, conditional on X, we can apply decoders (i.e., rotators) to both sides
of this equation and deduce

X, =UAUTX,

where we use X,,,t > 1 to denote a forecast.

6.4 Representation 2

This representation is related to one originally proposed by [Schmid, 2010].
It can be regarded as an intermediate step on the way to obtaining a related representation 3 to be presented later
As with Representation 1, we continue to
« use a full SVD and not a reduced SVD
As we observed and illustrated in a lecture about the Singular Value Decomposition
« @forafull SVDUU' =1,,,,, and U'U = I, are both identity matrices
« (b) for a reduced SVD of X, U U is not an identity matrix.

As we shall see later, a full SVD is too confining for what we ultimately want to do, namely, cope with situations in which
U TU is not an identity matrix because we use a reduced SVD of X.

But for now, let’s proceed under the assumption that we are using a full SVD so that requirements (a) and (b) are both
satisfied.

Form an eigendecomposition of the m x m matrix A =UT AU defined in equation (6.14):

A=WAW-! (6.15)
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where A is a diagonal matrix of eigenvalues and W is an m X m matrix whose columns are eigenvectors corresponding
to rows (eigenvalues) in A.

When UUT =1

mxXm?

as is true with a full SVD of X, it follows that
A=UAUT =UWAW-UT (6.16)

According to equation (6.16), the diagonal matrix A contains eigenvalues of Aand corresponding eigenvectors of A are
columns of the matrix UW.

It follows that the systematic (i.e., not random) parts of the X, dynamics captured by our first-order vector autoregressions
are described by

X, = UWAW'UTX,
Multiplying both sides of the above equation by W—1U " gives
WUTX,,, = AW UTX,

or
Bt-&-l = ABt
where our encoder is
b, =W IUTX,
and our decoder is
X, =UWb,

We can use this representation to construct a predictor X, ; of X, 41 conditional on X via:
X, =UWAWIUTX, (6.17)

In effect, [Schmid, 2010] defined an m X m matrix ® as

o, =UW (6.18)
and a generalized inverse
o =w-tUu’ (6.19)
[Schmid, 2010] then represented equation (6.17) as
X, = ADFX, (6.20)

Components of the basis vector Bt =W IUTX, = 0! X, are
DMD projected modes.

To understand why they are called projected modes, notice that
OF = (0 D,)7 D]
so that the m x p matrix
b= X
is a matrix of regression coefficients of the m X n matrix X on the m X p matrix ®_.

We'll say more about this interpretation in a related context when we discuss representation 3, which was suggested by
Tuetal [Tueral, 2014].

It is more appropriate to use representation 3 when, as is often the case in practice, we want to use a reduced SVD.
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6.5 Representation 3

Departing from the procedures used to construct Representations 1 and 2, each of which deployed a full SVD, we now
use a reduced SVD.

Again, we let p < min(m, n) be the rank of X.
Construct a reduced SVD

X=U8VT,
where now U is m x p, Sisp x p,and V' is p x n.
Our minimum-norm least-squares approximator of A now has representation
A=XVE0T (6.21)

Computing Dominant Eigenvectors of A
We begin by paralleling a step used to construct Representation 1, define a transition matrix for a rotated p x 1 state zt
by

A=0UTAO (6.22)
Interpretation as projection coefficients
[Brunton and Kutz, 2022] remark that A can be interpreted in terms of a projection of A onto the p modes in .

To verify this, first note that, because O0=1 , it follows that
A=UTAU =0 X'VE0TU =0T X' VE0T (6.23)

Next, we'll just compute the regression coefficients in a projection of AonU using a standard least-squares formula

~

OO T A= (0T0) " 0TXVEWT =0TX'VEWT = A

Thus, we have verified that Aisa least-squares projection of Aonto U.
An Inverse Challenge
Because we are using a reduced SVD, ooT + 1.

Consequently,
A+UATT,
so we can’t simply recover A from A and U.

A Blind Alley

We can start by hoping for the best and proceeding to construct an eigendecomposition of the p X p matrix A:
A=WAW-! (6.24)

where A is a diagonal matrix of p eigenvalues and the columns of W are corresponding eigenvectors.

Mimicking our procedure in Representation 2, we cross our fingers and compute an m X p matrix

~ ~

d, =0W (6.25)

6.5. Representation 3 93



Intermediate Quantitative Economics with Python

that corresponds to (6.18) for a full SVD.
At this point, where Ais given by formula (6.21) it is interesting to compute /i&’s:
Ad, = (X'VETT(OW)
= X'VEW
+ (UW)A
=d.A

That A&)S + ‘55/\ means that, unlike the corresponding situation in Representation 2, columns of <f>S = UW are not
eigenvectors of A corresponding to eigenvalues on the diagonal of matix A.

An Approach That Works
Continuing our quest for eigenvectors of A that we can compute with a reduced SVD, let’s define an m x p matrix ® as
d=Ad, = X'VEIW (6.26)

It turns out that columns of ® are eigenvectors of A.
This is a consequence of a result established by Tu et al. [Tu ef al., 2014] that we now present.

Proposition The p columns of ® are eigenvectors of A.

Proof: From formula (6.26) we have
A = (X'VEWUT (X' VS 1W)

= X'VS 1AW

= X'VEITWA

= OA
so that

Ad = DA. (6.27)

Let ¢, be the ith column of ® and ), be the corresponding ¢ eigenvalue of A from decomposition (6.24).

Equating the m x 1 vectors that appear on the two sides of equation (6.27) gives
/Iéf’i = Ay
This equation confirms that ¢, is an eigenvector of A that corresponds to eigenvalue A; of both Aand A.

This concludes the proof.

Also see [Brunton and Kutz, 2022] (p. 238)

6.5.1 Decoder of b as a linear projection

From eigendecomposition (6.27) we can represent Aas
A=DADT, (6.28)
From formula (6.28) we can deduce dynamics of the p x 1 vector Et:

z7t+1 = Azt
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where
b, = d*X, (6.29)
Since the m x p matrix ® has p linearly independent columns, the generalized inverse of & is
ot = (¢TP)LpT
and so
b= (®T®) DT X (6.30)

The p X n matrix bis recognizable as a matrix of least squares regression coefficients of the m x n matrix X on the
m X p matrix ¢ and consequently

X =®b 6.31)

is an m X n matrix of least squares projections of X on ®.
Variance Decomposition of X

By virtue of the least-squares projection theory discussed in this quantecon lecture https://python-advanced.quantecon.
org/orth_proj.html, we can represent X as the sum of the projection X of X on @ plus a matrix of errors.

To verify this, note that the least squares projection X is related to X by

X=X+e¢
or

X =0b+e (6.32)
where € is an m x n matrix of least squares errors satisfying the least squares orthogonality conditions €' ® = 0 or

(X —®b) @ =0 (6.33)

mxp

Rearranging the orthogonality conditions (6.33) gives X ' ® = b® " ®, which implies formula (6.30).

6.5.2 An Approximation

We now describe a way to approximate the p x 1 vector Bt instead of using formula (6.29).

In particular, the following argument adapted from [Brunton and Kutz, 2022] (page 240) provides a computationally
efficient way to approximate b,.

For convenience, we’ll apply the method at time ¢t = 1.

For ¢t = 1, from equation (6.32) we have
)Z’l — qﬁ)l (6.34)

where 51 isap x 1 vector.

Recall from representation 1 above that X; = U 7)1, where ?)1 is a time 1 basis vector for representation 1 and U is from
the full SVD X = UV .

It then follows from equation (6.32) that

Uzl = X/Vi_lﬁ/él + 61
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where ¢, is a least-squares error vector from equation (6.32).

It follows that
b, =UTX'VEWb, +UTe,
Replacing the error term U "¢, by zero, and replacing U from a full SVD of X with U from a reduced SVD, we obtain
an approximation b, to by:
b1 UTX'VE 1Wb1

Recall that from equation (6.23), A=0TxVE
It then follows that

b, = AWb,
and therefore, by the eigendecomposition (6.24) of A, we have

= WAD,

Consequently,
by = (WA)~'b,

or

b, = (WA 10T X, (6.35)

which is a computationally efficient approximation to the following instance of equation (6.29) for the initial vector 51:
b =otX, (6.36)

(To highlight that (6.35) is an approx1mat10n users of DMD sometimes call components of basis vector b = d* X, the

exact DMD modes and components of b, = (WA)~10T X, the approximate modes.)

Conditional on X, we can compute a decoded Xt +j»J = 1,2, ... from the exact modes via

X

1y = GAIDTX, (6.37)

or use compute a decoded X, ; from approximate modes via

X, ;= 0N (WA)TTX,. (6.38)

to forecast X

We can then use a decoded Xt+7 or Xt 4

+J

6.5.3 Using Fewer Modes

In applications, we'll actually use only a few modes, often three or less.
Some of the preceding formulas assume that we have retained all p modes associated with singular values of X.
We can adjust our formulas to describe a situation in which we instead retain only the r < p largest singular values.

In that case, we simply replace 3 with the appropriate r X r matrix of singular values, {7 with the m x r matrix whose
columns correspond to the 7 largest singular values, and V' with the n X r matrix whose columns correspond to the r
largest singular values.

Counterparts of all of the salient formulas above then apply.
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6.6 Source for Some Python Code

You can find a Python implementation of DMD here:

https://mathlab.sissa.it/pydmd

6.6. Source for Some Python Code
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CHAPTER
SEVEN

USING NEWTON’S METHOD TO SOLVE ECONOMIC MODELS

Contents
o Using Newton’s Method to Solve Economic Models
— Overview

— Fixed point computation using Newton's method

Root-Finding in one dimension

Multivariate Newton's method

Exercises

7.1 Overview

Many economic problems involve finding fixed points or zeros (also called “roots”) of functions.

For example, in a simple supply and demand model, an equilibrium price is one that makes excess demand zero.
In other words, an equilibrium is a zero of the excess demand function.

There are various computational techniques for solving for fixed points and zeros.

In this lecture we study an important gradient-based technique called Newton’s method.

Newton’s method does not always work but, in situations where it does, convergence is often fast when compared to other
methods.

The lecture will apply Newton’s method in one-dimensional and multidimensional settings to solve fixed-point and zero-
finding problems.

¢ When finding the fixed point of a function f, Newton’s method updates an existing guess of the fixed point by
solving for the fixed point of a linear approximation to the function f.

« When finding the zero of a function f, Newton’s method updates an existing guess by solving for the zero of a
linear approximation to the function f.

To build intuition, we first consider an easy, one-dimensional fixed point problem where we know the solution and solve
it using both successive approximation and Newton’s method.

Then we apply Newton’s method to multidimensional settings to solve for market equilibria with multiple goods.
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At the end of the lecture, we leverage the power of automatic differentiation in jax to solve a very high-dimensional
equilibrium problem.

We use the following imports in this lecture

import matplotlib.pyplot as plt
from typing import NamedTuple
from scipy.optimize import root
import jax.numpy as jnp

import jax

# Enable 64-bit precision
jax.config.update ("jax_enable_x64", True)

7.2 Fixed point computation using Newton’s method

In this section we solve the fixed point of the law of motion for capital in the setting of the Solow growth model.

We will inspect the fixed point visually, solve it by successive approximation, and then apply Newton’s method to achieve
faster convergence.

7.2.1 The Solow model

In the Solow growth model, assuming Cobb-Douglas production technology and zero population growth, the law of motion
for capital is

kiy =g(k,) where g(k):=sAk*+(1—-0)k 7.1)

Here
o k, is capital stock per worker,
e A, > 0 are production parameters with o < 1
e s > ( is a savings rate, and
« § € (0,1) is a rate of depreciation
In this example, we wish to calculate the unique strictly positive fixed point of g, the law of motion for capital.
In other words, we seek a k* > 0 such that g(k*) = k*.
« Such a k™ is called a steady state, since k, = k* implies k,, | = k™.
Using pencil and paper to solve g(k) = k, you will be able to confirm that

k* _ (%) 1/<1_O‘)
o
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7.2.2 Implementation

Let’s store our parameters in NamedTup le to help us keep our code clean and concise.

class SolowParameters (NamedTuple) :

A: float
s: float
a: float
5: float

This function creates a suitable SolowParameters with default parameter values.

def create_solow_params (A=2.0, s=0.3, a=0.3, &=0.4):
"""Creates a Solow model parameterization with default values."""
return SolowParameters (A=A, s=s, a=a, 0=08)

The next two functions implement the law of motion (7.2.7) and store the true fixed point k*.

def g(k, params):
A, s, a, 8 = params
return A * s * k**a + (1 - &) * k

def exact_fixed_point (params) :
A, s, a, 8 = params
return ((s * A) / 8) ** (1 / (1 - a))

Here is a function to provide a 45 degree plot of the dynamics.

def plot_45(params, ax, fontsize=14):

k_min, k_max = 0.0, 3.0
k_grid = jnp.linspace(k_min, k_max, 1200)

# Plot the functions

1b = r"Sg(k) = sAk~{\alpha} + (1 - \delta)ks"

ax.plot (k_grid, g(k_grid, params), lw=2, alpha=0.6, label=1Db)
ax.plot (k_grid, k_grid, "k--", 1lw=1, alpha=0.7, label="45")

# Show and annotate the fixed point
kstar = exact_fixed_point (params)
fps = (kstar,)
ax.plot (fps, fps, "go", ms=10, alpha=0.6)
ax.annotate (
r"$k~* = (sA / \delta)*{\frac {1-\alpha}}s",
xy=(kstar, kstar),
xycoords="data",
xytext=(20, -20),
textcoords="offset points",
fontsize=fontsize,

ax.legend (loc="upper left", frameon=False, fontsize=fontsize)

ax.set_yticks ((0, 1, 2, 3))
ax.set_yticklabels((0.0, 1.0, 2.0, 3.0), fontsize=fontsize)
ax.set_ylim (0, 3)

(continues on next page)
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(continued from previous page)

ax.set_xlabel ("Sk_tS$", fontsize=fontsize)
ax.set_ylabel ("Sk_{t+1}$", fontsize=fontsize)

Let’s look at the 45 degree diagram for two parameterizations.

params = create_solow_params ()
fig, ax = plt.subplots(figsize=(8, 8))
plot_45 (params, ax)

plt.show ()
3.0 ~
glk) =sAk* + (1 — 0)k
------ 45
2.0 T ‘,//
’z@ * 1
7 k¥ = (sA/S)s
— ,"’
+
R ’
= //
1.0
0.0 l' T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
kt
params = create_solow_params (a=0.05, 6=0.5)

fig, ax = plt.subplots(figsize=(8, 8))
plot_45 (params, ax)
plt.show ()
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3.0 :
g(k) = SAK® + (1 — )k
------ 45

2.0_ ’z"

Ki+1

1.0

O_D T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ke

We see that £* is indeed the unique positive fixed point.

Successive approximation

First let’s compute the fixed point using successive approximation.

In this case, successive approximation means repeatedly updating capital from some initial state k, using the law of
motion.

Here’s a time series from a particular choice of k.

def compute_iterates(k_0, £, params, n=25):
"""Compute time series of length n generated by function f£."""
k = k_0
k_iterates = []
for t in range(n):
k_iterates.append (k)
(continues on next page)
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(continued from previous page)
k = f(k, params)
return k_iterates

params = create_solow_params ()
k_0 = 0.25
k_series = compute_iterates (k_0, g, params)

k_star = exact_fixed_point (params)

fig, ax = plt.subplots()

ax.plot (k_series, "o")

ax.plot ([k_star] * len(k_series), "k-—-")
ax.set_ylim(0, 3)

plt.show ()

3.0
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2.0 1
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1.0~
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ﬂ.ﬂ T T T T T T
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Let’s see the output for a long time series.

k_series = compute_iterates (k_0, g, params, n=10_000)
k_star_approx = k_series[-1]
k_star_approx

1.7846741842265788

This is close to the true value.

k_star

1.7846741842265788
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Newton’s method

In general, when applying Newton’s fixed point method to some function g, we start with a guess x, of the fixed point
and then update by solving for the fixed point of a tangent line at x,.

To begin with, we recall that the first-order approximation of g at z, (i.e., the first order Taylor approximation of g at
) is the function

9(@) ~ g(xo) + g’ (x) (& — 7)) (7.2)
We solve for the fixed point of g by calculating the x; that solves

9(7g) — g’ ()T

T, =
1—g'(z)
Generalising the process above, Newton’s fixed point method iterates on

g(x,) —g'(z,)7,

Ty = g x given (7.3)

To implement Newton’s method we observe that the derivative of the law of motion for capital (7.2.1) is
g (k) = asAk®t + (1 —9) (7.4)
Let’s define this:
def Dg(k, params):

A, s, Q, & = params
return a * A * s * k ** (a - 1) + (1 - 98)

Here’s a function q representing (7.2.3).

def g(k, params):
return (g(k, params) - Dg(k, params) * k) / (1 - Dg(k, params))

Now let’s plot some trajectories.

def plot_trajectories

params,

k0_a=0.8, # first initial condition
k0_b=3.1, # second initial condition
n=20, # length of time series
fs=14, # fontsize

fig, axes = plt.subplots(2, 1, figsize=(10, 6))

axl, ax2 = axes

ksl = compute_iterates(kO_a, g, params, n)

axl.plot (ksl, "-o", label="successive approximation")
ks2 = compute_iterates (kO_b, g, params, n)

ax2.plot (ks2, "-o", label="successive approximation")
ks3 = compute_iterates(kO_a, g, params, n)

axl.plot (ks3, "-o", label="newton steps")

ks4 = compute_iterates(kO_b, g, params, n)
(continues on next page)
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(continued from previous page)
ax2.plot (ks4, "-o", label="newton steps")

for ax in axes:
ax.plot (k_star * jnp.ones(n), "k-—-")
ax.legend(fontsize=fs, frameon=False)
ax.set_ylim(0.6, 3.2)
ax.set_yticks ((k_star,))
ax.set_yticklabels (("$k"*S$",), fontsize=fs)
ax.set_xticks(jnp.linspace (0, 19, 20))

plt.show ()

params = create_solow_params ()
plot_trajectories (params)

—e— successive approximation
newton steps

k™1 p—t —
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
—e— successive approximation
newton steps
k™ 1

We can see that Newton’s method converges faster than successive approximation.

7.3 Root-Finding in one dimension

In the previous section we computed fixed points.
In fact Newton’s method is more commonly associated with the problem of finding zeros of functions.

Let’s discuss this “root-finding” problem and then show how it is connected to the problem of finding fixed points.
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7.3.1 Newton’s method for zeros

Let’s suppose we want to find an x such that f(x) = 0 for some smooth function f mapping real numbers to real numbers.
Suppose we have a guess z, and we want to update it to a new point x;.

As a first step, we take the first-order approximation of f around z:

f(@) = f(zo) + [ (wo) (x — z0)

Now we solve for the zero of f .
In particular, we set f (1) = 0 and solve for z; to get
f(zo)
T, =Ty — ,
! 0 [ (zo)

Generalizing the formula above, for one-dimensional zero-finding problems, Newton’s method iterates on

f(zy)

Tyl =Ty — 5, T given (7.5)

fl(xt)7

T, given

The following code implements the iteration (7.3.1)

def newton(f, x_0, tol=le-7, max_iter=100_000) :
x = x_0
Df = jax.grad(f)

# Implement the zero-finding formula
@jax.jit
def g(x):

return x - f(x) / Df(x)

error = tol + 1

n=20
while error > tol:
n +=1

if n > max_iter:
raise Exception("Max iteration reached without convergence")
y = 9a(x)
error = jnp.abs(x - y)
X =y
print (f"iteration {n}, error = {error:.5f}")
return x.item()

Numerous libraries implement Newton’s method in one dimension, including SciPy, so the code is just for illustrative
purposes.

(That said, when we want to apply Newton’s method using techniques such as automatic differentiation or GPU acceler-
ation, it will be helpful to know how to implement Newton’s method ourselves.)
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7.3.2 Application to finding fixed points

Now consider again the Solow fixed-point calculation, where we solve for k satisfying g(k) = k.
We can convert to this to a zero-finding problem by setting f(x) := g(x) — .

Any zero of f is clearly a fixed point of g.

Let’s apply this idea to the Solow problem

params = create_solow_params ()
k_star_approx_newton = newton(f = lambda x: g(x, params) - x, x_0=0.8)
iteration 1, error = 1.27209
iteration 2, error = 0.28180
iteration 3, error = 0.00561
iteration 4, error = 0.00000
iteration 5, error = 0.00000

k_star_approx_newton

1.7846741842265788

The result confirms convergence we saw in the graphs above: a very accurate result is reached with only 5 iterations.

7.4 Multivariate Newton’s method

In this section, we introduce a two-good problem, present a visualization of the problem, and solve for the equilibrium of
the two-good market using both a zero finder in SciPy and Newton’s method.

We then expand the idea to a larger market with 5,000 goods and compare the performance of the two methods again.

We will see a significant performance gain when using Newton’s method.

7.4.1 A two-goods market equilibrium

Let’s start by computing the market equilibrium of a two-good problem.
We consider a market for two related products, good 0 and good 1, with price vector p = (pg, ;)
Supply of good ¢ at price p is
q; (p) = biv/pi
Demand of good ¢ at price p is
a7 (p) = exp(—(azp + a;1p1)) + ¢;

Here ¢;, b; and a;; are parameters.

For example, the two goods might be computer components that are typically used together, in which case they are
complements. Hence demand depends on the price of both components.

The excess demand function is

eilp) =q¢(p) —ai(p), i=0,1
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An equilibrium price vector p* satisfies e, (p*) = 0.

A= %00 o1 , b= bo and c= ‘o
aip Q11 by 1

We set

for this particular question.

A graphical exploration

Since our problem is only two-dimensional, we can use graphical analysis to visualize and help understand the problem.

Our first step is to define the excess demand function

The function below calculates the excess demand for given parameters

@jax.jit
def e(p, A, b, c):
return jnp.exp(-A @ p) + ¢ — b * jnp.sqgrt (p)

Our default parameter values will be

A = jnp.array([[0.5, 0.4], [0.8, 0.2]])
jnp.ones (2)
c = jnp.ones(2)

on
Il

At a price level of p = (1, 0.5), the excess demand is

p = jnp.array([1, 0.5])
ex_demand = e(p, A, b, <)

print (
f"The excess demand for good 0 is {ex_demand[0]:.3f} \n"
f"The excess demand for good 1 is {ex_demand[1]:.3f}"

The excess demand for good 0 is 0.497
The excess demand for good 1 is 0.699

To increase the efficiency of computation, we will use the power of vectorization using jax . vmap. This is much faster
than the python loops.

# Create vectorization on the first axis of p.
e_vectorized_p_1 = jax.vmap(e, in_axes=(0, None, None, None))

# Create vectorization on the second axis of p.
e_vectorized = jax.vmap (e_vectorized_p_1, in_axes=(0, None, None, None))

Next we plot the two functions e, and e; on a grid of (p,, p;) values, using contour surfaces and lines.

We will use the following function to build the contour plots
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def plot_excess_demand(ax, good=0, grid_size=100, grid_max=4, surface=True):
p_grid = jnp.linspace (0, grid_max, grid_size)

# Create meshgrid for all combinations of p_1 and p_2
P1, P2 = jnp.meshgrid(p_grid, p_grid, indexing="ij")

# Stack to create array of shape (grid _size, grid_size, 2)
P = jnp.stack ([P1l, P2], axis=-1)

# Compute all values at once using vectorized function
z_full = e_vectorized(P, A, b, c)
z = z_full[:, :, good]

if surface:
csl = ax.contourf (p_grid, p_grid, z.T, alpha=0.5)
plt.colorbar(csl, ax=ax, format=" ")

ctrl = ax.contour (p_grid, p_grid, z.T, levels=[0.0])
ax.set_xlabel ("Sp_0S")

ax.set_ylabel ("Sp_1S$")

ax.set_title(f"Excess demand for good {good}")
plt.clabel (ctrl, inline=1, fontsize=13)

Here’s our plot of e:

fig, ax = plt.subplots()
plot_excess_demand (ax, good=0)
plt.show ()
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Excess demand for good 0
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Here’s our plot of e;:

fig, ax = plt.subplots/()
plot_excess_demand (ax, good=1)
plt.show ()
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Excess demand for good 1
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We see the black contour line of zero, which tells us when e,(p) = 0.
For a price vector p such that e, (p) = 0 we know that good 7 is in equilibrium (demand equals supply).

If these two contour lines cross at some price vector p*, then p* is an equilibrium price vector.

fig, ax = plt.subplots(figsize=(10, 5.7))
for good in (0, 1):

plot_excess_demand (ax, good=good, surface=False)
plt.show ()
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Excess demand for good 1
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It seems there is an equilibrium close to p = (1.6, 1.5).
Using a multidimensional root finder
To solve for p* more precisely, we use a zero-finding algorithm from scipy.optimize.
We supply p = (1, 1) as our initial guess.
init_p = Jjnp.ones(2)
This uses the modified Powell method to find the zero
$%stime
solution = root (lambda p: e(p, A, b, c¢), init_p, method="hybr")
CPU times: user 4.52 ms, sys: 1.69 ms, total: 6.2 ms
Wall time: 3.07 ms
Here’s the resulting value:
p = solution.x
p
array ([1.57080182, 1.46928838])
This looks close to our guess from observing the figure. We can plug it back into e to test that e(p) ~ 0:
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()
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2.0383694732117874e-13

This is indeed a very small error.

Adding gradient information
In many cases, for zero-finding algorithms applied to smooth functions, supplying the Jacobian of the function leads to
better convergence properties.

Here, we manually calculate the elements of the Jacobian

Oe de,
&) 5 p)
Io) = [gf,;(p) 2;1@)1

def jacobian_e(p, A, b, c)
p_0, p_.1 =p
a_00, a_01 = A[O, ]
a_10, a_11 = A[1, :]
j_00 = -a_00 * jnp.exp(-a_00 * p_0) - (b[0] / 2) * p_0 ** (=1 / 2)
j_01 = -a_01 * jnp.exp(-a_01 * p_1)
J_10 = -a_10 * jnp.exp(-a_10 * p_0)
j_11 = -a_11 * jnp.exp(-a_11 * p_1) - (b[l] / 2) * p_1 ** (-1 / 2)
]

J = [[j_00, j_01], [j_10, j_11]
return jnp.array (J)

$%time

solution = root (
lambda p: e(p, A, b, <),
init_p,

jac = lambda p: jacobian_e(p, A, b, c),
method="hybr",

CPU times: user 223 ms, sys: 16.6 ms, total: 239 ms
Wall time: 344 ms

Now the solution is even more accurate (although, in this low-dimensional problem, the difference is quite small):

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.3322676295501878e-15

Using Newton’s method
Now let’s use Newton’s method to compute the equilibrium price using the multivariate version of Newton’s method
Pny1 = Pn — Je(pn)_le(pn) (76)

This is a multivariate version of (7.3.1)

(Here J,(p,,) is the Jacobian of e evaluated at p,,.)

114 Chapter 7. Using Newton’s Method to Solve Economic Models


https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Intermediate Quantitative Economics with Python

The iteration starts from some initial guess of the price vector pj,.

Here, instead of coding Jacobian by hand, we use the jacobian () function in the jax library to auto-differentiate and
calculate the Jacobian.

With only slight modification, we can generalize our previous attempt to multidimensional problems

def newton (f, x_0, tol=le-5, max_iter=10) :

x = x_0
f_jac = jax.Jjacobian (f)
@jax.jit
def g(x):
return x - jnp.linalg.solve (f_jac(x), f(x))

error = tol + 1

n =0
while error > tol:
n += 1

if n > max_iter:

raise Exception("Max iteration reached without convergence")
y = q(x)
if any(jnp.isnan(y)):

raise Exception("Solution not found with NaN generated")

error = jnp.linalg.norm(x — y)

X =Yy

print (f"iteration {n}, error = {error:.5f}")
print ("\n" + f"Result = {x} \n")
return x

We find the algorithm terminates in 4 steps

o\°

$time
p = newton (lambda p: e(p, A, b, c), init_p)

iteration 1, error = 0.62515
iteration 2, error = 0.11152
iteration 3, error = 0.00258
iteration 4, error = 0.00000
Result = [1.57080182 1.46928838]

CPU times: user 260 ms, sys: 14.4 ms, total: 274 ms
Wall time: 352 ms

e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.4632739464559563e-13

The result is very accurate.

With the larger overhead, the speed is not better than the optimized scipy function.
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7.4.2 A high-dimensional problem

Our next step is to investigate a large market with 3,000 goods.

The excess demand function is essentially the same, but now the matrix A is 3000 x 3000 and the parameter vectors b

and c are 3000 x 1.
dim = 3000

# Create JAX random key

key = jax.random.PRNGKey (0)

Create a random matrix A and normalize the columns to sum to one

#

A = jax.random.uniform(key, (dim, dim))
S = jnp.sum (A, axis=0)

A=A/ s

# Set up b and c

b = jnp.ones (dim)

c = jnp.ones (dim)

Here’s our initial condition

init_p = Jjnp.ones (dim)

p = newton (lambda p: e(p, A, b, c), init_p)

iteration 1, error =

iteration 2, error =

iteration 3, error =

iteration 4, error =

iteration 5, error =

Result = [1.50723773

CPU times: user 7.39
Wall time: 8.73 s

23.22262

3.94537

0.08500

0.00004

0.00000

1.51041603 1.50134795 ... 1.49941629 1.49033692 1.49666807]

s, sys: 1.99 s, total: 9.38 s

e_p = jnp.max(jnp.abs(e(p, A, b, c)))

e_p.item()

4.440892098500626e-16

With the same tolerance, we compare the runtime and accuracy of Newton’s method to SciPy’s root function

$%time
solution = root (

lambda p: e(p, A, b,

init_p,
jac = lambda p: jax

c),

.jacobian(e) (p, A, b, c¢),

(continues on next page)
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(continued from previous page)

method="hybr",
tol=le-5,

CPU times: user 31.7 s, sys: 93.5 ms, total: 31.8 s
Wall time: 32.3 s

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

9.209231102147442e-07

7.5 Exercises

©® Exercise 7.5.1
Consider a three-dimensional extension of the Solow fixed point problem with
2 3 3
A=12 4 2|, s=02, a=05 6§=038
1 5 1
As before the law of motion is
kyoy = g(k,) where g(k):=sAk*+ (1—90)k
However, k, is now a 3 x 1 vector.
Solve for the fixed point using Newton’s method with the following initial values:

kly = (1,1,1)
k2, = (3,5,5)
k3, = (50,50, 50)

© Hint

 The computation of the fixed point is equivalent to computing k* such that g(k*) — k* = 0.
« If you are unsure about your solution, you can start with the solved example:

2 00
A=1(0 2 O
0 0 2

with s = 0.3, a = 0.3, and § = 0.4 and starting value:
ko= (1,1,1)

The result should converge to the analytical solution.
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© Solution to Exercise 7.5.1

Let’s first define the parameters for this problem

A = jnp.array([[(2.0, 3.0, 3.0], [2.0, 4.0, 2.0], [1.0, 5.0, 1.011)

s = 0.2
a = 0.5
8 = 0.8
initLs = [jnp.ones(3), Jjnp.array([3.0, 5.0, 5.0]), Jjnp.repeat(50.0,

Then define the multivariate version of the formula for the (7.2.1)

@jax.jit
def multivariate_solow(k, A=A, s=s, a=a, 5=8):
return s * jnp.dot (A, k**a) + (1 - 8) * k

Let’s run through each starting value and see the output

attempt = 1
for init in initLs:
print (f'Attempt {attempt}: Starting value is {init} \n')

%time k = newton(lambda k: multivariate_solow (k) - k, \
init)
print ('-'*64)

attempt += 1

Attempt 1: Starting value is [1. 1. 1.]

iteration 1, error = 50.49630
iteration 2, error = 41.10937
iteration 3, error = 4.29413
iteration 4, error = 0.38543
iteration 5, error = 0.00544
iteration 6, error = 0.00000

~

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 238 ms, sys: 16.8 ms, total: 255 ms
Wall time: 320 ms

Attempt 2: Starting value is [3. 5. 5.]

iteration 1, error = 2.07011
iteration 2, error = 0.12642
iteration 3, error = 0.00060
iteration 4, error = 0.00000

~

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 106 ms, sys: 7.61 ms, total: 114 ms
Wall time: 129 ms

Attempt 3: Starting value is [50. 50. 50.]

31
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iteration
iteration
iteration
iteration
iteration
iteration

Result = [3.84058108

CPU times:
Wall time:

o U W N

~

~

~

~

~

~

error =
error =

error
error
error

error =

73.00943
.49379
.68070
.01620
.00001
.00000

O O O O o

3.87071771 3.41091933]

user 244 ms, sys: 21.9 ms, total: 266 ms
307 ms

We find that the results are invariant to the starting values given the well-defined property of this question.

But the number of iterations it takes to converge is dependent on the starting values.

Let’s substitute the output back into the formula to check our last result

multivariate_solow (k)

Array ([0.,

0.

4 O'JI

Note the error is very small.

k

dtype=float64)

We can also test our results on the known solution

A = jnp.array([[2.0,

.0, 0.01, [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]11)

s = 0.3
a= 0.3
86 = 0.4
init = jnp.repeat (1.0, 3)
$%time
k = newton (lambda k: multivariate_solow(k, A=A, s=s, a=a, 6=8) - k, init)
iteration 1, error 1.57459
iteration 2, error 0.21345
iteration 3, error 0.00205
iteration 4, error 0.00000

Result = [1.78467418

CPU times:
Wall time:

~

275 ms

1.78467418 1.78467418]

user 230 ms, sys: 14.4 ms, total: 244 ms

The result is very close to the ground truth but still slightly different.

$%time
k = newton (
lambda k: multivariate_solow(k, A=A, s=s, a=a, 6=8) - k, init, tol=le-7
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iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000
iteration 5, error = 0.00000

~

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 218 ms, sys: 10.7 ms, total: 229 ms
Wall time: 258 ms

We can see it steps towards a more accurate solution.

© Exercise 7.5.2

In this exercise, let’s try different initial values and check how Newton’s method responds to different starting points.

Let’s define a three-good problem with the following default values:

0.2 01 0.7 1 1
A= 103 02 05/, b= |1 and c= |1
0.1 0.8 0.1 1 1

For this exercise, use the following extreme price vectors as initial values:

plO = (57575)
P2y =(1,1,1)
p3y = (4.5,0.1,4)

Set the tolerance to 1e — 15 for more accurate output.

© Solution to Exercise 7.5.2

Define parameters and initial values

A = jnp.array([[0.2, 0.2, 0.7], [0.3, 0.2, 0.5], [0.1, 0.8, 0.1]11)
b = jnp.array([1.0, 1.0, 1.0])
c = jnp.array([1.0, 1.0, 1.01])

initLs = [jnp.repeat (5.0, 3), Jjnp.ones(3), Jjnp.array([4.5, 0.1, 4.01)1]

Let’s run through each initial guess and check the output

attempt = 1
for init in initLs:
print (f"Attempt {attempt}: Starting value is {init} \n")
%time p = newton(lambda p: e(p, A, b, c¢), init, tol=le-15, max_iter=15)
print ("-" * 64)
attempt += 1

Attempt 1: Starting value is [5. 5. 5.]

iteration 1, error = 9.24381
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Exception

Traceback (most recent call last)

File <timed exec>:1

Cell In[34],

15 y

line 17,
q(x)

in newton(f, x_0, tol, max_iter)

16 if any(jnp.isnan(y)):

=== {7 raise Exception("Solution not found with NaN generated")
18 error = jnp.linalg.norm(x - y)
19 x =y

Exception: Solution not found with NaN generated

Attempt 2: Starting value is [1. 1. 1.]

iteration 1, error = 0.73419

iteration 2, error = 0.12472

iteration 3, error = 0.00269

iteration 4, error = 0.00000

iteration 5, error = 0.00000

iteration 6, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 99.5 ms, sys: 8.59 ms, total: 108 ms

Wall time: 122 ms

Attempt 3: Starting value is [4.5 0.1 4. ]

iteration 1, error = 4.89202

iteration 2, error = 1.21206

iteration 3, error = 0.69421

iteration 4, error = 0.16895

iteration 5, error = 0.00521

iteration 6, error = 0.00000

iteration 7, error = 0.00000

iteration 8, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 105 ms, sys: 6.23 ms, total: 111 ms

Wall time: 124 ms

We can see that Newton’s method may fail for some starting values.
Sometimes it may take a few initial guesses to achieve convergence.

Substitute the result back to the formula to check our result

e(p, A, b, c)

Array([0., 0., O.

1, dtype=float64)

We can see the result is very accurate.
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CHAPTER
EIGHT

ELEMENTARY PROBABILITY WITH MATRICES

This lecture uses matrix algebra to illustrate some basic ideas about probability theory.

After introducing underlying objects, we'll use matrices and vectors to describe probability distributions.

Among concepts that we'll be studying include

« a joint probability distribution

« marginal distributions associated with a given joint distribution

« conditional probability distributions

« statistical independence of two random variables

« joint distributions associated with a prescribed set of marginal distributions
- couplings
— copulas

« the probability distribution of a sum of two independent random variables
- convolution of marginal distributions

« parameters that define a probability distribution

« sufficient statistics as data summaries

We'll use a matrix to represent a bivariate or multivariate probability distribution and a vector to represent a univariate

probability distribution

This companion lecture describes some popular probability distributions and describes how to use Python to sample from

them.

In addition to what’s in Anaconda, this lecture will need the following libraries:

'pip install prettytable

As usual, we'll start with some imports

import numpy as np

import matplotlib.pyplot as plt

import prettytable as pt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')
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8.1 Sketch of Basic Concepts

We'll briefly define what we mean by a probability space, a probability measure, and a random variable.

For most of this lecture, we sweep these objects into the background

© Note

Nevertheless, they’ll be lurking beneath induced distributions of random variables that we’ll focus on here. These
deeper objects are essential for defining and analysing the concepts of stationarity and ergodicity that underly laws of
large numbers. For a relatively nontechnical presentation of some of these results see this chapter from Lars Peter
Hansen and Thomas J. Sargent’s online monograph titled “Risk, Uncertainty, and Values”:https://Iphansen.github.io/
QuantMFR/book/1_stochastic_processes.html.

Let €2 be a set of possible underlying outcomes and let w € €2 be a particular underlying outcomes.

Let G C 2 be a subset of ().

Let & be a collection of such subsets G C €.

The pair ), & forms our probability space on which we want to put a probability measure.

A probability measure 1 maps a set of possible underlying outcomes G € & into a scalar number between 0 and 1
« this is the “probability” that X belongs to A, denoted by Prob{X € A}.

A random variable X (w) is a function of the underlying outcome w € Q.

The random variable X (w) has a probability distribution that is induced by the underlying probability measure 1 and
the function X (w):

Prob(X € A) = //,L(w)dw (8.1)
g

where G is the subset of () for which X (w) € A.

We call this the induced probability distribution of random variable X.

Instead of working explicitly with an underlying probability space €2, & and probability measure 1, applied statisticians
often proceed simply by specifying a form for an induced distribution for a random variable X.

That is how we'll proceed in this lecture and in many subsequent lectures.

8.2 What Does Probability Mean?

Before diving in, we’ll say a few words about what probability theory means and how it connects to statistics.

We also touch on these topics in the quantecon lectures https://python.quantecon.org/prob_meaning.html and https://
python.quantecon.org/navy_captain.html.

For much of this lecture we'll be discussing fixed “population” probabilities.

These are purely mathematical objects.

To appreciate how statisticians connect probabilities to data, the key is to understand the following concepts:
« A single draw from a probability distribution

« Repeated independently and identically distributed (i.i.d.) draws of “samples” or “realizations” from the same
probability distribution
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« A statistic defined as a function of a sequence of samples

« An empirical distribution or histogram (a binned empirical distribution) that records observed relative fre-
quencies

o The idea that a population probability distribution is what we anticipate relative frequencies will be in a long
sequence of i.i.d. draws. Here the following mathematical machinery makes precise what is meant by anticipated
relative frequencies

- Law of Large Numbers (LLN)
- Central Limit Theorem (CLT)
Scalar example
Let X be a scalar random variable that takes on the I possible values 0, 1, 2, ..., I — 1 with probabilities
Prob(X =i) = f;

where
f;20, Y fi=1
We sometimes write
X ~{fi¥i5
as a short-hand way of saying that the random variable X is described by the probability distribution { f;}1=1.
Consider drawing a sample z, z{, ..., £ y_; of IV independent and identically distributoed draws of X.
What do the “identical” and “independent” mean in IID or iid (“identically and independently distributed”)?
« “identical” means that each draw is from the same distribution.

 “independent” means that joint distribution equal products of marginal distributions, i.e.,

Prob{zy, = iy, =iy, ..., xn_1 = in_q} = Prob{zy =iy} -+ - Prob{x; ; =i;_;}
= fiofil T fz'N,l

We define an empirical distribution as follows.
Foreach:=0,...,1 — 1, let

N; = number of times X = ¢,
I-1

N = Z N, total number of draws,
i=0

fi = % ~ frequency of draws for which X = ¢
Key concepts that connect probability theory with statistics are laws of large numbers and central limit theorems
LLN:
o A Law of Large Numbers (LLN) states that fl — fias N — o0
CLT:
« A Central Limit Theorem (CLT) describes a rate at which fi — f;
Remarks
« For “frequentist” statisticians, anticipated relative frequency is all that a probability distribution means.
« But for a Bayesian it means something else — something partly subjective and purely personal.

- we say “partly” because a Bayesian also pays attention to relative frequencies
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8.3 Representing Probability Distributions

A probability distribution Prob(X € A) can be described by its cuamulative distribution function (CDF)
Fy(z) =Prob{X < z}.

Sometimes, but not always, a random variable can also be described by density function f(x) that is related to its CDF
by

Prob{X € B} = / f(t)dt
B

te
x
Fo)= [ st
—0o0
Here B is a set of possible X’s whose probability of occurring we want to compute.
When a probability density exists, a probability distribution can be characterized either by its CDF or by its density.
For a discrete-valued random variable
« the number of possible values of X is finite or countably infinite
« we replace a density with a probability mass function, a non-negative sequence that sums to one
» we replace integration with summation in the formula like (8.1) that relates a CDF to a probability mass function
In this lecture, we mostly discuss discrete random variables.
Doing this enables us to confine our tool set basically to linear algebra.

Later we'll briefly discuss how to approximate a continuous random variable with a discrete random variable.

8.4 Univariate Probability Distributions

We'll devote most of this lecture to discrete-valued random variables, but we'll say a few things about continuous-valued
random variables.

8.4.1 Discrete random variable

Let X be a discrete random variable that takes possible values: ¢ = 0,1,..., ] —1 = X.
Here, we choose the maximum index I — 1 because of how this aligns nicely with Python’s index convention.

Define f; = Prob{X = i} and assemble the non-negative vector

o
r=| 0 (82)
fra
for which f; € [0, 1] for each ¢ and Zf;é fi=1
This vector defines a probability mass function.
The distribution (8.2) has parameters {f;},_o .., o since f; ; =1 — 25;02 fi

These parameters pin down the shape of the distribution.
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(Sometimes I = oc.)
Such a “non-parametric” distribution has as many “parameters” as there are possible values of the random variable.
We often work with special distributions that are characterized by a small number parameters.
In these special parametric distributions,
fi=9(i;0)
where 6 is a vector of parameters that is of much smaller dimension than 1.
Remarks:
« A statistical model is a joint probability distribution characterized by a list of parameters
« The concept of parameter is intimately related to the notion of sufficient statistic.
« A statistic is a nonlinear function of a data set.
« Sufficient statistics summarize all information that a data set contains about parameters of statistical model.
- Note that a sufficient statistic corresponds to a particular statistical model.
- Sufficient statistics are key tools that Al uses to summarize or compress a big data set.
« R. A. Fisher provided a rigorous definition of information - see https://en.wikipedia.org/wiki/Fisher_information
An example of a parametric probability distribution is a geometric distribution.

It is described by
fi =Prob{X =i} =(1—-X)\, Xe€]0,1], i=0,1,2,..

Evidently, ZZO fi=1

Let 6 be a vector of parameters of the distribution described by f, then

£,(0) >0, fi(0) =1
i=0

8.4.2 Continuous random variable
Let X be a continous random variable that takes values X € X = [Xy, X ] whose distributions have parameters 6.

Prob{X € A} = / flz;0)dz;  f(x;0) >0
reA

where A is a subset of X and

Prob{X € X} =1

8.5 Bivariate Probability Distributions

We'll now discuss a bivariate joint distribution.

To begin, we restrict ourselves to two discrete random variables.
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Let X,Y be two discrete random variables that take values:
X e{0,..,I -1}

Y €{0,..,J —1}

Then their joint distribution is described by a matrix

FIX.]:[fij}ie{O ..... 1-1},5€{0,...,J—1}

whose elements are
fij=Prob{X =4, Y =3} >0

where

R

8.6 Marginal Probability Distributions

The joint distribution induce marginal distributions

J—1
Prob{X =i} = f=p,; i=0,..,1—1
J=0

-1
Prob{Y =j} =Y f;=v;, j=0,..,J—1
=0
For example, let a joint distribution over (X, Y") be
25 1
F= [.15 .5] 8-3)

The implied marginal distributions are:

Prob{X =0} = .25+ .1 = .35
Prob{X =1} = .15+ .5 = .65
Prob{Y =0} = .25+ .15 =4
Prob{Y =1} =.1+.5=.6

Digression: If two random variables X, Y are continuous and have joint density f(x, y), then marginal distributions can
be computed by

f(z) = /Rf(x,y)dy
f(y) = /R fy)de
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8.7 Conditional Probability Distributions

Conditional probabilities are defined according to

Prob{AN B
Prob{A | B} = Pro{b{B}}
where A, B are two events.
For a pair of discrete random variables, we have the conditional distribution
fis Prob{X =1i,Y = j}
S fy  Prob{Y =}

Prob{X =i|Y = j} =

where i =0,...,I —1, j=0,...,J—1.
Note that
Zi fij

Zi fij =1

> Prob{X, =i|Y; = j} =

Remark: The mathematics of conditional probability implies:

Prob{X =4,Y = j}  Prob{Y = j|X = i}Prob{ X =i}
Prob{Y =j} Prob{Y = j}

Prob{X =i|Y = j} = (3.4)

© Note

Formula (8.4) is also what a Bayesian calls Bayes’ Law. A Bayesian statistician regards marginal probability distri-
bution Prob(X =), = 1, ..., J as a prior distribution that describes his personal subjective beliefs about X. He
then interprets formula (8.4) as a procedure for constructing a posterior distribution that describes how he would
revise his subjective beliefs after observing that Y equals j.

For the joint distribution (8.3)

1 1
Prob{X =0|Y =1} = T5- 6

8.8 Transition Probability Matrix

Consider the following joint probability distribution of two random variables.

Let X, Y be discrete random variables with joint distribution
Prob{X =i,Y = j} = p;;
where ¢ =0,...,1 —1;5=0,...,J —1land

ZZPU: L pi; 2 0.
i g

An associated conditional distribution is
Pij . PI‘Ob{Y =7,X= Z}
Zj Pij Prob{X =i}

Prob{Y =i|X = j} =
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We can define a transition probability matrix P with ¢, j component
py; = Prob{Y = j|X =i} = i
> j Pij

where

{Pu pu}
Pa1 P22
The first row is the probability that Y = 7, = 0, 1 conditional on X = 0.

The second row is the probability that Y = j, 7 = 0, 1 conditional on X = 1.
Note that

_ ijij
* Zj Pij = 2, Pij

= 1, so each row of the transition matrix P is a probability distribution (not so for each column).

8.9 Application: Forecasting a Time Series

Suppose that there are two time periods.
o t =0 “today”
o t =1 “tomorrow”
Let X (0) be a random variable to be realized at ¢t = 0, X (1) be a random variable to be realized at ¢ = 1.
Suppose that
Prob{X(0) =i, X(1) = j} = f;; 2 0 = 0,-, [ — 1

2.2 Js=1
i

[ is a joint distribution over [X (0), X (1)].

A conditional distribution is

Prob{X (1) = j|X(0) =i} =

Remark:

o This formula is a workhorse for applied economic forecasters.

8.10 Statistical Independence

Random variables X and Y are statistically independent if
Prob{X =4,Y = j} = f9;

where

Prob{X =i} =f,>0> f,=1
Prob{Y =j} =g;>0 > g,=1
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Conditional distributions are

Prob{X = i|Y = j} = zfi?ﬂ_'g_ - f;?j = f,
1 719] J
fi9; _ fig; .

Prob{Y:j|X:i}:Z Fa T T =g;
jJidj i

8.11 Means and Variances

The mean and variance of a discrete random variable X are
px = E[X] = kProb{X = k}
k

0% =D[X] =Y (k—E[X])* Prob{X = k}

A continuous random variable having density fy (z)) has mean and variance

Hx [E[X}:[ zfx(x)de

=D =E[(X =] = [ @) fxoie

8.12 Matrix Representations of Some Bivariate Distributions

Let’s use matrices to represent a joint distribution, conditional distribution, marginal distribution, and the mean and
variance of a bivariate random variable.

The table below illustrates a probability distribution for a bivariate random variable.

P=lnl=] 03 01 )

Marginal distributions are

Prob(X =i) = > f,;=u,
J

Prob(Y = j) = Z fi=v;

Sampling:
Let’s write some Python code that let’s us draw some long samples and compute relative frequencies.

The code will let us check whether the “sampling” distribution agrees with the “population” distribution - confirming that
the population distribution correctly tells us the relative frequencies that we should expect in a large sample.

# specify parameters

xs = np.array ([0, 1])

ys = np.array([10, 20])

f = np.array([[0.3, 0.2], [0.1, 0.4]11])
f_cum = np.cumsum(f)

(continues on next page)
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(continued from previous page)

# draw random numbers

p = np.random.rand(1_000_000)

x = np.vstack ([xs[1l]*np.ones (p.shape), ys[l]*np.ones (p.shape)])
# map to the bivariate distribution

x[0, p < f_cum[2]] = xs[1]
x[1, p < f_cum([2]] = ys[0]
x[0, p < f_cum[1]] = xs[0]
x[1, p < f_cum[1]] = ys[1]
x[0, p < f_cum[0]] = xs[0]
x[1, p < f_cum[0]] = ys[O0]
print (x)
[[1 0 0. 1 0 0.]
[20. 10. 20 . 20. 10. 10.11

© Note

To generate random draws from the joint distribution F', we use the inverse CDF technique described in this com-
panion lecture.

# marginal distribution
xp = np.sum(x[0, :] == xs[0])/1_000_000
yp = np.sum(x[1, :] == ys[0])/1_000_000

# print output

print ("marginal distribution for x")
xmtb = pt.PrettyTable ()

["x_value', 'x_prob']
, Xpl)

1, 1-xpl)

xmtb.field names
xmtb.add_row ([
xmtb.add_row ([
print (xmtb)

xs[0]
xs[1
print ("\nmarginal distribution for y")
ymtb = pt.PrettyTable()

ymtb.field_names = ['y_value', 'y_prob']
ymtb.add_row([ys[0], vypl)
ymtb.add_row([ys[1], 1-ypl)

print (ymtb)

marginal distribution for x

fom o —— +
| x_value | x_prob |
fom fom +
| 0 | 0.500367 |
| 1 | 0.499633 |
fom fom e ————— +

(continues on next page)
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(continued from previous page)

| 10 | 0.399477 |
[ 20 | 0.6005229999999999 |
fomm fom +

# conditional distributions

xcl = x[0, x[1, :] == ys[0]]
xc2 = x[0, x[1, ] == ys[1l]]
ycl = x[1, x[O0, ] == xs[0]]
yc2 = x[1, x[0, ] == xs[11]
xclp = np.sum(xcl == xs[0])/len(xcl)
xc2p = np.sum(xc2 == xs[0])/len(xc2)
yclp = np.sum(ycl == ys[0])/len(ycl)
yc2p = np.sum(yc2 == ys[0])/len(yc2)

# print output

print ("conditional distribution for x")

xctb = pt.PrettyTable ()

xctb.field_names = ['y_value', 'prob(x=0)"', 'prob(x=1)"']
xctb.add_row([ys[0], xclp, l-xclp])

xctb.add_row([ys[1l], xc2p, 1-xc2p])

print (xctb)

print ("\nconditional distribution for y")

yctb = pt.PrettyTable()

yctb.field _names = ['x_value', 'prob (y=10)"', 'prob(y=20)"']
yctb.add_row([xs[0], yclp, l-yclp])

yctb.add_row([xs[1], yc2p, l-yc2p])

print (yctb)

conditional distribution for x

fom o o +
| y_value | prob (x=0) | prob (x=1) |
o o o +
| 10 | 0.7506740062631891 | 0.24932599373681086

| 20 | 0.33385898625031846 | 0.6661410137496815 |
o o o +

conditional distribution for y

fom———— o o +
| x_value | prob (y=10) | prob (y=20) |
fom o — o +
| 0 | 0.5993141034480691 | 0.4006858965519309
| 1 | 0.1993463201990261 | 0.8006536798009739
o o o +

Let’s calculate population marginal and conditional probabilities using matrix algebra.
Y1 Y2 X
x, ¢+ 03 02 : 05
e ¢ 01 04 : 05

y + 04 06 @ 1
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(1) Marginal distribution:

var i ovar; varg
coio05 05
y P04 06
(2) Conditional distribution:
T T, Ty

y:y2 : ﬁ. %033 O:é.;.(.)...(w
) Y1 Ya
x:xl : Lg : 06 0?) : 04
x:% : OT}) : 02 0:.?.). _ 0 .

These population objects closely resemble the sample counterparts computed above.

Let’s wrap some of the functions we have used in a Python class that will let us generate and sample from a discrete
bivariate joint distribution.

class discrete_bijoint:

def _ _init__ (self, f, xs, ys):
'"'"'initialization

parameters:

f: the bivariate joint probability matrix

xs: values of x vector

ys: values of y vector

rro

self.f, self.xs, self.ys = f, xs, ys

def joint_tb(self):
""'print the joint distribution table'''’

xs = self.xs

ys = self.ys

f = self.f

jtb = pt.PrettyTable ()

jtb.field_names = ['x_value/y_value', *ys, 'marginal sum for x']

for i in range(len(xs)):

jtb.add_row ([xs[i], *f[i, :], np.sum(f[i, :]1)1)
jtb.add_row(['marginal_ sum for y', *np.sum(f, 0), np.sum(f)])
print ("\nThe joint probability distribution for x and y\n", jtb)
self.jtb = Jjtb

def draw(self, n):
"'"'draw random numbers

parameters:
n: number of random numbers to draw

rro

(continues on next page)
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def

def

(continued from previous page)

xs = self.xs

ys = self.ys

f_cum = np.cumsum(self.f)
p = np.random.rand(n)

x = np.empty([2, p.shape[0]])
1f = len(f_cum)

1x = len(xs) -1

ly = len(ys)-1

for i in range(1lf):

x[0, p < f_cum[lf-1-i]] = xs[1lx]
x[1, p < f_cum[lf-1-i]] = ys[ly]
if ly ==
1x —= 1
ly = len(ys)-1
else:
ly =1
self.x = x

self.n = n

marg_dist (self) :
"'"'"marginal distribution'''

x = self.x

xs = self.xs

ys = self.ys

n = self.n

xmp = [np.sum(x[0, :] == xs[i])/n for i in range(len(xs))]
ymp = [np.sum(x[1, :] == ys[i])/n for i in range (len(ys)) ]

# print output
xmtb = pt.PrettyTable()
ymtb = pt.PrettyTable()
xmtb.field _names = ['x_value', 'x_prob']
ymtb.field names = ['y_value', 'y_prob']
for i in range (max(len(xs), len(ys))):
if 1 < len(xs):
xmtb.add_row([xs[i], xmp[i]])
if 1 < len(ys):
ymtb.add_row([ys[i], ymp[i]l])
xmtb.add_row (['sum', np.sum(xmp) ])
ymtb.add_row(['sum', np.sum(ymp)])
print ("\nmarginal distribution for x\n", xmtb)
print ("\nmarginal distribution for y\n", ymtb)

self.xmp = xmp
self.ymp ymp

cond_dist (self):
"!"'conditional distribution'''
x = self.x

xs = self.xs
ys = self.ys

n = self.n

XCp = np.empty
yCp = np.empty

len(ys), len(xs)])
len(xs), len(ys)])
for i in range (max(len(ys), len(xs))):
if 1 < len(ys):
xi = x[0, x[1, :] == ys[i]]

(continues on next page)
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(continued from previous page)

idx = xi.reshape(len(xi), 1) == xs.reshape(l, len(xs))
xcp[i, :] = np.sum(idx, 0)/len(xi)
if 1 < len(xs):
yi = x[1, x[0, :] == xs[i]]
idy = yi.reshape(len(yi), 1) == ys.reshape(l, len(ys))

ycpli, :] = np.sum(idy, 0)/len(yi)

# print output
xctb = pt.PrettyTable ()
yctb = pt.PrettyTable()
xctb.field_names = ['x_value', *xs, 'sum']
yctb.field _names = ['y_value', *ys, 'sum']
for i in range (max(len(xs), len(ys))):
if 1 < len(ys):
xctb.add_row([ys[i], *xcpl[i], np.sum(xcpl[i])])
if i < len(xs):
yctb.add_row([xs[i], *ycpli], np.sum(ycpl[i]l)])
print ("\nconditional distribution for x\n", =xctb)
print ("\nconditional distribution for y\n", yctb)

self.xcp = xcp
self.xyp ycp

Let’s apply our code to some examples.

Example 1

# joint
d = discrete_bijoint (f, xs, ys)
d.joint_tb ()

The joint probability distribution for x and y
o +———— o o +

| x_value/y_value | 10 | 20 | marginal sum for x |
o +——— o o +
| 0 | 0.3 | 0.2 | 0.5 |
| 1 [ 0.1 | 0.4 | 0.5 |
| marginal_sum for y | 0.4 | 0.6000000000000001 | 1.0 |
o +———— o o +

# sample marginal
d.draw(1_000_000)
d.marg_dist ()

marginal distribution for x

o o —— +
| x_value | x_prob |
fom fom +
| 0 | 0.499401 |
| 1 | 0.500599 |
| sum | 1.0 |
fom fom +

(continues on next page)
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(continued from previous page)

fom Fom +
| 10 | 0.399464 |
| 20 | 0.600536

| sum | 1.0 |
o o +

# sample conditional
d.cond_dist ()

conditional distribution for x

fomm— et e e fo———— +
| x_value | 0 | 1 | sum |
e o o o +
| 10 | 0.7501877515871267 | 0.24981224841287325 | 1.0 |
| 20 | 0.33258289261592977 | 0.6674171073840702 | 1.0 |
fommm e o o +
conditional distribution for y
t——————— o o +———— +
| y_value | 10 | 20 | sum |
o B it ELE e +———— +
| 0 | 0.6000648777235128 | 0.39993512227648725 | 1.0 |
| 1 | 0.19934318686213917 | 0.8006568131378609 | 1.0 |
o o o +———— +
Example 2

xs_new = np.array([10, 20, 30])

ys_new = np.array ([1l, 21])

f_new = np.array([[0.2, 0.1], [0.1, 0.3], [0.15, 0.1511)

d_new = discrete_bijoint (f_new, xs_new, ys_new)

d_new.joint_tb ()
The Jjoint probability distribution for x and y
o o - e +
| x_value/y_value | 1 | 2 | marginal sum for x |
o o - o +
| 10 | 0.2 | 0.1 | 0.30000000000000004 |
| 20 | 0.1 | 0.3 | 0.4 |
| 30 | 0.15 | 0.15 | 0.3 |
| marginal_sum for y | 0.45000000000000007 | 0.55 | 1.0 |
Fom R fo——— o +

d_new.draw (1_000_000)
d_new.marg_dist ()

marginal distribution for x

o o —— +
| x_value | x_prob |
fom fom e ————— +
| 10 | 0.299455 |
| 20 | 0.400348 |
| 30 | 0.300197 |
| sum | 1.0 |
fom———— o +

(continues on next page)
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marginal distribution for y

o —— o —— +
| y_value | y_prob |
o o +
| 1 | 0.451311 |
| 2 | 0.548689
| sum | 1.0 |
fom fom +

d_new.cond_dist ()

conditional distribution for x

o e o e fo———— +
| x_value | 10 | 20 | 30 | sum |
fommm————— fom fom fom o +
| 1 | 0.44353228704817743 | 0.2228972925543583 | 0.33357042039746426 | 1.0 |
| 2 | 0.18094767709941334 | 0.546305830807616 | 0.2727464920929707 | 1.0 |
fommm fom fom fom o +

o e o +————= +
| y_value | 1 | 2 | sum |
fom o — fom = +
| 10 | 0.6684510193518225 | 0.3315489806481775 | 1.0 |
| 20 | 0.251271393887318 | 0.748728606112682 | 1.0 |
| 30 | 0.5014840254899283 | 0.49851597451007174 | 1.0 |
o o o +————= +

8.13 A Continuous Bivariate Random Vector

A two-dimensional Gaussian distribution has joint density

Fz.y) = (2n010,/T— )L exp [—

+

o i ~ ((w —051)2 _ 2p( —::;iy —pa) | (y —0529)}

;exp [_ 1 ((ﬂff—m)2 _ 2@ )y — ) (y—u2)2>]
2770102@ 2(1 - p2) 0% 0109 U%

We start with a bivariate normal distribution pinned down by

.2
SR
# define the joint probability density function
def func(x, y, pl=0, p2=5, ol=np.sqrt(5), o2=np.sqrt(l), p=.2/np.sqrt(5*1)):
A = (2 * np.pi * 0l * 02 * np.sqgrt(l — p**2))**(-1)
B=-1/2/ (1 - p**2)
Cl = (x — pl)**2 / gl**2
C2 =2 *p * (x —pnl) * (y — n2) / ol / o2
C3 = (y — p2)**2 / o2**2
return A * np.exp(B * (C1 - C2 + C3))
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pl =0

p2 = 5

ol = np.sqrt(5)

02 = np.sqrt (1)

p = .2 / np.sqrt(5 * 1)

x = np.linspace
y = np.linspace
x_mesh, y_mesh

(-10, 10, 1_000)
(-10, 10, 1_000)
= np.meshgrid(x, y, indexing="ij")

Joint Distribution

Let’s plot the population joint density.

# Smatplotlib notebook
fig = plt.figure()
ax = plt.axes (projection='3d")

surf = ax.plot_surface(x_mesh, y_mesh, func(x_mesh, y_mesh), cmap='viridis'")

plt.show ()

t 0.07
T 0.06
t 0.05
T 0.04
- 0.03
0.02
0.01
0.00

# Smatplotlib notebook

fig = plt.figure()
ax = plt.axes (projection='3d")

curve = ax.contour (x_mesh, y_mesh, func(x_mesh, y_mesh), zdir='x")

plt.ylabel ('y")
(continues on next page)
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ax.set_zlabel ('f")
1)

ax.set_xticks ([
plt.show ()

(continued from previous page)

t 0.07
+ 0.06
+ 0.05
t 0.04
t 0.03
- 0.02
0.01
0.00

Next we can use a built-in numpy function to draw random samples, then calculate a sample marginal distribution from

the sample mean and variance.

p= np.array ([0, 5])
o= np.array([[5, .21,

n = 1_000_000
np.random.multivariate_normal (p, o,

(.2, 111

data =
x = datal:, 0]
y = datal[:, 1]

Marginal distribution

alpha=0.6)

plt.hist (x, bins=1_000,
np.std(x)

px_hat, ox_hat = np.mean(x),
print (px_hat, ox_hat)

X_sim = np.random.normal (px_hat,
plt.hist (x_sim, bins=1_000, alpha=0.4,

plt.show ()

ox_hat,

-0.004291455603152286 2.236065700912158

1_000_000)
histtype="step")
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4000 -

3500 A

3000 A

2500 A

2000 A

1500 A

1000 A

500 A

-10 -5

plt.hist(y, bins=1_000, density=True, alpha=0.6)

py_hat, oy_hat = np.mean(y), np.std(y)
print (py_hat, oy_hat)

y_sim = np.random.normal (py_hat, oy_hat,
plt.hist(y_sim, bins=1_000, density=True,

plt.show ()

4.9981005158756595 0.9992333897641678

1_000_000)
alpha=0.4, histtype="step")

8.13. A Continuous Bivariate Random Vector
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Conditional distribution

For a bivariate normal population distribution, the conditional distributions are also normal:

y—p
XY = 5]~ Nix + pox 22 030 )|

z—p
[Y]X =a] ~ N[uy +poy UXX,U%(I —pQ)]

O Note

Please see this quantecon lecture for more details.

Let’s approximate the joint density by discretizing and mapping the approximating joint density into a matrix.
We can compute the discretized marginal density by just using matrix algebra and noting that
Jij

Prob{X =i|Y = j} = W
i1

Fixy = 0.

# discretized marginal density

x = np.linspace(-10, 10, 1_000_000)

z = func(x, y=0) / np.sum(func(x, y=0))
plt.plot (x, z)

plt.show ()
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The mean and variance are computed by

fij
Zi fij

E[X[Y =j] =) iProb{X =Y = j} = Zz

i
; > fij

2
DIX]Y =] = Z <Z - .UX\Y:j)
Let’s draw from a normal distribution with above mean and variance and check how accurate our approximation is.

# discretized mean
px = np.dot (x, z)

# discretized standard deviation
ox = np.sqrt(np.dot ((x — ux)**2, z))

# sample

zz = np.random.normal (px, ox, 1 _000_000)

plt.hist (zz, bins=300, density=True, alpha=0.3, range=[-10, 10])
plt.show ()
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Fixx = 1.

y = np.linspace (0, 10, 1_000_000)

z = func(x=1, y=y) / np.sum(func(x=1, y=y))
plt.plot (y, z)

plt.show ()
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# discretized mean and standard deviation

py = np.dot (y,z)
oy = np.sqgrt(np.dot ((y - npy)**2, z))

# sample
zz = np.random.normal (py,oy,1_000_000)

plt.hist (zz, bins=100, density=True, alpha=0.3)

plt.show ()

8.13. A Continuous Bivariate Random Vector
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We compare with the analytically computed parameters and note that they are close.

print (px, ox)
print(pl + p * o1l * (0 - p2) / 02, np.sqgrt(cl**2 * (1 - p**2)))

print (pny, oy)
print (p2 + p * 02 * (1 - pl) / ol, np.sqgrt(oc2**2 * (1 - p**2)))

-0.9997518414498444 2.2265841331697698
-1.0 2.227105745132009
5.039999456960768 0.9959851265795593
5.04 0.9959919678390986

8.14 Sum of Two Independently Distributed Random Variables

Let X,Y be two independent discrete random variables that take values in X, Y, respectively.
Define a new random variable Z = X + Y.
Evidently, Z takes values from Z defined as follows:

X={0,1,..,I—1};  f,=Prob{X =i}

Y ={0,1,...,J —1}; g; = Prob{Y = j}

Z =A{0,1,....,.1+J—2} hy =Prob{X +Y =k}
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Independence of X and Y implies that

h =Prob{X =0,Y =k} +Prob{X =1,Y =k —1} +... + Prob{X =k, Y = 0}
h, = fogx + fi9k 1 + -+ froa91 + frgo for k=0,1,...14+J—-2

Thus, we have:
k
hy, = Zfigk—i =f*yg
i—0
where f * g denotes the convolution of the f and g sequences.

Similarly, for two random variables X, Y with densities fy, gy, the density of Z = X + Y is

f2(2) = / Fx (@) fy(z — 2)dz = fx * gy

where f * gy denotes the convolution of the f and gy functions.

8.15 Coupling

Start with a joint distribution

fij =Prob{X =4,Y = j}
1=0,---T—1
j=0,-J—1

stacked to an I x .J matrix

eg. I=1,J=1

where

f21 f22

From the joint distribution, we have shown above that we obtain unique marginal distributions.

[fn fu]

Now we'll try to go in a reverse direction.

We'll find that from two marginal distributions, can we usually construct more than one joint distribution that verifies
these marginals.

Each of these joint distributions is called a coupling of the two marginal distributions.

Let’s start with marginal distributions
Prob{X =i} = Zfij = ;i =0, 1 —1
J

PrOb{Y:j}:Zfijzl/j7j:0,"',J—1

Given two marginal distribution, x for X and v for Y, a joint distribution f;; is said to be a coupling of 1 and v.

Example:
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Consider the following bivariate example.

Prob{X =0} =1 —q = p,
Prob{X =1} =¢ =y,
Prob{Y =0} =1 —r =,
Prob{Y =1} =r =1,
where 0 <g<r<1
We construct two couplings.
The first coupling if our two marginal distributions is the joint distribution
. (1-q¢(1—r) Q=g
i q(1—r7) qr

To verify that it is a coupling, we check that

M1 =4q
v=01-q¢(1—-r)+(1—-rjg=1-r
p=r(l—q) +qr=r

A second coupling of our two marginal distributions is the joint distribution

£ = [(187“) r;q}

The verify that this is a coupling, note that

l—r+r—qg+qg=1

to=1-—4q
M1 =4q
vg=1—r
vy=7

Thus, our two proposed joint distributions have the same marginal distributions.
But the joint distributions differ.

Thus, multiple joint distributions [f;;] can have the same marginals.

Remark:

o Couplings are important in optimal transport problems and in Markov processes. Please see this lecture about
optimal transport

8.16 Copula Functions

Suppose that X, X,, ..., X,, are N random variables and that
« their marginal distributions are F) (z,), F5(z5), ..., Fx (2 ), and

o their joint distribution is H(x, , ..., Ty)
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Then there exists a copula function C|(-) that verifies
H(wy, @9, ..., ay) = C(Fy(2y), Fy(xs), ..., Fy(ay))-
We can obtain
Cluy, tig, oo u,) = HIFT (ug), Fy Hug), oo, Fyt (uy)]

In a reverse direction of logic, given univariate marginal distributions F(z,), Fy(xy),..., Fy(zy) and a
copula function C(-), the function H(xy,xq,...,zx5) = C(Fi(z1), Fy(zs),...,Fy(zy)) is a coupling of
Fy(zq), Fy(@g), -, Fy(zy).

Thus, for given marginal distributions, we can use a copula function to determine a joint distribution when the associated
univariate random variables are not independent.

Copula functions are often used to characterize dependence of random variables.
Discrete marginal distribution
As mentioned above, for two given marginal distributions there can be more than one coupling.

For example, consider two random variables X, Y with distributions

Prob(X = 0) = 0.6,
Prob(X =1) = 0.4,
Prob(Y = 0) = 0.3,
Prob(Y =1) = 0.7,

For these two random variables there can be more than one coupling.

Let’s first generate X and Y.

# define parameters
mu = np.array([0.6, 0.4])
nu = np.array([0.3, 0.71])

# number of draws
draws = 1_000_000

H

generate draws from uniform distribution
= np.random.rand (draws)

'O

generate draws of X and Y via uniform distribution

= np.ones (draws)

= np.ones (draws)

<= mul[0]] = O

> mu[0]] =1
]
]

el

<= nu[0]] =0
p > nul0] =1

KOKROX X KX s
e}

oo Josy

# calculate parameters from draws
gq_hat = sum(x[x == 1])/draws
r_hat = sum(yl[y == 1])/draws

# print output
print ("distribution for x")
xmtb = pt.PrettyTable ()
xmtb.field_names = ['x_value', 'x_prob']
(continues on next page)

8.16. Copula Functions 151



Intermediate Quantitative Economics with Python

(continued from previous page)

xmtb.add_row ([0, 1-g_hat])
xmtb.add_row([1, g_hat])
print (xmtb)

print ("distribution for y")

ymtb = pt.PrettyTable ()

ymtb.field names = ['y_value', 'y_prob']
ymtb.add_row ([0, 1-r_hat])
ymtb.add_row ([1, r_hat])

print (ymtb)

distribution for x

e fom +
| x_value | X_prob |
o o +

| 0 | 0.5986389999999999

| 1 \ 0.401361 |
o o +
distribution for y

to———————— fom +
| y_value | y_prob |
fom——————— o +
| 0 | 0.29978899999999997 |
| 1 \ 0.700211 \
fom——————— o +

Let’s now take our two marginal distributions, one for X, the other for Y, and construct two distinct couplings.

For the first joint distribution:
Prob(X =4,Y =j) = f,;

where

0.18 0.42
il = { 0.12 0.28 ]

Let’s use Python to construct this joint distribution and then verify that its marginal distributions are what we want.
# define parameters
f1 = np.array([[0.18, 0.42], [0.12, 0.28]])

f1_cum = np.cumsum(fl)

# number of draws
drawsl = 1_000_000

# generate draws from uniform distribution
p = np.random.rand(drawsl)

# generate draws of first copuling via uniform distribution

cl = np.vstack ([np.ones (drawsl), np.ones(drawsl)])
# X=0, Y=0

cl[0, p <= fl_cum[0]] = 0

cl[l, p <= fl_cum[0]] = 0

# X=0, Y=1

cl[0, (p > fl1l_cum[0])*(p <= fl1_cum([1])] = 0

cl[l, (p > fl1_cum[0])*(p <= fl1l_cum[1])] =1

(continues on next page)
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(p > f1_cum[1])
(p > f1_cum[1])

fl1 _cum[2])

(p > f1_cum([2])

*(p <= fl_cum[2])] =1
*(p <= fl1_cum([2])] = 0

*(p <= fl_cum[3])] =1
*(p <= fl1l_cum([3])] =1

# calculate parameters from draws
f1_00 =

£f1_01
£1_10
f1_ 11

sum((cl[0, =]
sum( (c1[0, ]
sum((c1[0, =:]
sum((cl[O0, ]

== 0)*(cl[1,

# print output of first joint distribution
print ("first joint distribution for cl")
= pt.PrettyTable ()

cl_mtb

cl_mtb.
cl _mtb.
cl_mtb.
cl_mtb.
cl_mtb.
print (cl_mtb)

field_names =
add_row ([0,
add_row ([0,
add_row ([1,
add_row ([1,

I4

’

I4

= O = O

4

['cl_x_value',
£1_00])
£f1_01]
£1_10]

1

)
)
£1_111)

first joint distribution for cl

'cl_y_value',

fomm - e fom———————— +
| cl_x _value | cl_y_value | cl_prob |
fomm e e fomm +
| 0 \ 0 | 0.179864 |
| 0 \ 1 | 0.420154 |
| 1 | 0 | 0.119622 |
| 1 \ 1 | 0.28036
o o o +
# calculate parameters from draws
cl_g_hat = sum(cl[0, :] == 1)/drawsl
cl_r hat = sum(cl[l, :] == 1)/drawsl
# print output
print ("marginal distribution for x")
cl_x_mtb = pt.PrettyTable()
cl_x _mtb.field_names = ['cl_x_value', 'cl_x_prob']
cl_x mtb.add_row ([0, 1-cl_g_hat])
cl_x mtb.add_row([1l, cl_g hat])
print (cl_x_mtb)
print ("marginal distribution for y")
cl_ymtb = pt.PrettyTable()
cl_ymtb.field _names = ['cl_y_value', 'cl_y_prob']

cl_ymtb.add_row ([0,
cl_ymtb.add_row([1,

print (cl

_ymtb)

1-cl_r_hat]
cl_r_hat])

marginal distribution for x
fom o +

| cl_x_value

)

] )) /drawsl
3] )) /drawsl
:] == 0))/drawsl

] )) /drawsl

'cl_prob']

(continued from previous page)

(continues on next page)
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Fom e o +
| 0 | 0.6000179999999999 |

| 1 \ 0.399982 \
fom e o +
marginal distribution for y

fom e et +
| cl_y value | cl_y_prob |
fomm R +
| 0 | 0.29948600000000003 |
| 1 \ 0.700514 |
Fomm R +

(continued from previous page)

Now, let’s construct another joint distribution that is also a coupling of X and Y

1= |

# define parameters
£2 np.array ([[0.3, 0.3],
£f2_cum np.cumsum (£2)

[0, 0.411)

# number of draws
draws2 1_000_000

# generate draws from uniform distribution
P

np.random.rand (draws?2)

0.3 0.3
0

|

0.4

# generate draws of first coupling via uniform distribution

c2 = np.vstack ([np.ones (draws2), np.ones (draws2)])
# X=0, Y=0

c2[0, p <= f2_cum[0]] = O

c2[1l, p <= f2_cum[0]] = O

# X=0, Y=1

c2[0, (p > f2_cum[0])*(p <= f2_cum([1])] = 0

c2[1l, (p > f2_cum[0])*(p <= f2_cum[1])] =1

# X=1, Y=0

c2[0, (p > f2_cum[1])*(p <= f2_cum[2])] = 1

c2[l, (p > f2_cum[1l])*(p <= f2_cum([2])] = 0

# X=1, Y=1

c2[0, (p > f2_cum[2])*(p <= f2_cum[3])] = 1

c2[1l, (p > f2_cum[2])*(p <= f2_cum[3])] =1

# calculate parameters from draws

£f2_00 = sum((c2[0, :] == 0)*(c2[1, ] == 0))/draws2
f2_01 = sum((c2[0, :] == 0)*(c2[1, :] == 1))/draws2
£f2_10 = sum((c2[0, :] == 1)*(c2[1, :] == 0))/draws2
f2_11 = sum((c2[0, :] == 1)*(c2[1, ] == 1)) /draws2

# print output of second joint distribution
print ("first joint distribution for c2")

c2_mtb = pt.PrettyTable ()
c2_mtb.field_names = ['c2_x_value',
c2_mtb.add_row ([0, 0, £2_00])
c2_mtb.add_row ([0, 1, £2_011)
c2_mtb.add_row([1, 0, f2_10])
c2_mtb.add_row([1, 1, f2_11])

print (c2_mtb)

'c2_y_value',

'c2_prob']
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first joint distribution for c2

fom o fom +
| c2_x_value | c2_y_value | c2_prob |
fom o ——— fom +
| 0 | 0 | 0.300016
| 0 \ 1 | 0.300006
| 1 | 0 | 0.0 |
| 1 \ 1 | 0.399978
fommmmm fommmm fommm +
# calculate parameters from draws
c2_g_hat = sum(c2[0, :] == 1)/draws2
c2_r_hat = sum(c2[1, :] == 1)/draws2
# print output
print ("marginal distribution for x")
c2_x_mtb = pt.PrettyTable()
c2_x_mtb.field_names = ['c2_x_value', 'c2_x_prob']

c2_x_mtb.add_row ([0, 1-c2_g hat])
c2_x_mtb.add_row([1l, c2_g _hat])
print (c2_x_mtb)

print ("marginal distribution for y")
c2_ymtb = pt.PrettyTable()
c2_ymtb.field_names = ['c2_y_value',
c2_ymtb.add_row ([0, 1-c2_r_hat])
c2_ymtb.add_row([1l, c2_r_hat])

print (c2_ymtb)

marginal distribution for x

'c2_y_prob']

o o +

| c2_x_value | c2_x_prob |

e Fo—————————— +

| 0 | 0.600022 |

| 1 | 0.399978
fo——————————— do—————————— +

marginal distribution for y

Fom o +
| c2_y_value | c2_y_prob |
o o +
| 0 | 0.30001599999999995 |
| 1 | 0.699984 |
o e +

We have verified that both joint distributions, ¢; and c,, have identical marginal distributions of X and Y, respectively.

So they are both couplings of X and Y.

8.16. Copula Functions
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CHAPTER
NINE

SOME PROBABILITY DISTRIBUTIONS

This lecture is a supplement to this lecture on statistics with matrices.
It describes some popular distributions and uses Python to sample from them.

It also describes a way to sample from an arbitrary probability distribution that you make up by transforming a sample
from a uniform probability distribution.

In addition to what’s in Anaconda, this lecture will need the following libraries:

'pip install prettytable

As usual, we'll start with some imports

import numpy as np

import matplotlib.pyplot as plt

import prettytable as pt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')

9.1 Some Discrete Probability Distributions

Let’s write some Python code to compute means and variances of some univariate random variables.
We'll use our code to
« compute population means and variances from the probability distribution
« generate a sample of N independently and identically distributed draws and compute sample means and variances

« compare population and sample means and variances

9.2 Geometric distribution

A discrete geometric distribution has probability mass function
Prob(X =k) = (1 —p)k1p,k=1,2,..., pe(0,1)

where k = 1, 2, ... is the number of trials before the first success.
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The mean and variance of this one-parameter probability distribution are

Let’s use Python draw observations from the distribution and compare the sample mean and variance with the theoretical
results.

# specify parameters
p, n = 0.3, 1_000_000

# draw observations from the distribution
x = np.random.geometric(p, n)

# compute sample mean and variance

p_hat = np.mean (x)
02_hat = np.var (x)
print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)

# compare with theoretical results
print ("\nThe population mean is: ", 1/p)
print ("The population variance is: ", (1-p)/(p**2))

The sample mean is: 3.336758
The sample variance is: 7.788456049436001

The population mean is: 3.3333333333333335
The population variance is: 7.777777777777778

9.3 Pascal (negative binomial) distribution

Consider a sequence of independent Bernoulli trials.

Let p be the probability of success.

Let X be a random variable that represents the number of failures before we get r successes.
Its distribution is

X ~ NB(r,p)

Prob(X = k;7,p) = [k ji; 1] pr(1 _p)k

Here, we choose from among k + r — 1 possible outcomes because the last draw is by definition a success.

We compute the mean and variance to be

k(1 —
V(X) = (p2 p)
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# specify parameters
r, p, n =10, 0.3, 1_000_000

# draw observations from the distribution
x = np.random.negative_binomial (r, p, n)

# compute sample mean and variance

p_hat = np.mean (x)

02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)
print ("\nThe population mean is: ", r* (1-p)/p)

print ("The population variance is: ", r*(l-p)/p**2)

The sample mean is: 23.336809
The sample variance 1is: 77.77764269751908

The population mean is: 23.333333333333336
The population variance is: 77.77777777777779

9.4 Newcomb-Benford distribution

The Newcomb-Benford law fits many data sets, e.g., reports of incomes to tax authorities, in which the leading digit is
more likely to be small than large.

See https://en.wikipedia.org/wiki/Benford’s_law

A Benford probability distribution is

1
Prob{X = d} = log,,(d + 1) —log,,(d) = log, (1 + E)

where d € {1,2,---,9} can be thought of as a first digit in a sequence of digits.

This is a well defined discrete distribution since we can verify that probabilities are nonnegative and sum to 1.

1 2 1
log, (1 + E) >0, z:log10 (1 + E) =1
d=1

The mean and variance of a Benford distribution are

9
1
EX] = 1 1+ — | =~ 3.4402
[X] ;dng(er) 3.440
! 2 1
VIX] =) (d—E[X]) log,, <1+E> ~ 6.0565
d=1

We verify the above and compute the mean and variance using numpy.

Benford_pmf = np.array([np.logl0(1+1/d) for d in range(1,10)])
k = np.arange (1, 10)

# mean
mean = k @ Benford pmf

(continues on next page)
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(continued from previous page)
# variance
var = ((k — mean) ** 2) @ Benford pmf

# verify sum to 1

print (np.sum(Benford_pmf))
print (mean)

print (var)

0.9999999999999999
3.4402369671232065
6.056512631375667

# plot distribution

plt.plot (range(1,10), Benford_pmf, 'o'")
plt.title('Benford\'s distribution')
plt.show ()

Benford's distribution

0.307 @

0.25 A

0.20 A

0.15 A

0.10 - °

0.05 A ° °

Now let’s turn to some continuous random variables.
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9.5 Univariate Gaussian distribution

We write

to indicate the probability distribution

In the below example, we set 4 = 0,0 = 0.1.

# specify parameters
p, o =0, 0.1

# specify number of draws

n = 1_000_000

X ~ N(u,0%)
1 1
f(z|u,o?) = ezl
(@fu,0%) = —o—5

# draw observations from the distribution

b

= np.random.normal (1,

n)

# compute sample mean and variance

p_hat = np.mean (x)
o_hat = np.std(x)

print ("The sample mean is:

n

4

p_hat)

print ("The sample standard deviation is: ", o_hat)

The sample mean is:
The sample standard deviation is:

# compare
print (p—p_hat < 1le-3)
print (oc—-o_hat < 1e-3)

True
True

9.6 Uniform Distribution

The population mean and variance are

-0.00010131211225029483
0.09998804263871316

X ~ Ula, ]

f(:v):{blg’ asrsb

, otherwise

9.5. Univariate Gaussian distribution

161



Intermediate Quantitative Economics with Python

# specify parameters
a, b =10, 20

# specify number of draws
n = 1_000_000

# draw observations from the distribution
x = a + (b—-a)*np.random.rand(n)

# compute sample mean and variance

p_hat = np.mean (x)

02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)
print ("\nThe population mean is: ", (a+b)/2)

print ("The population variance is: ", (b-a)**2/12)

The sample mean is: 15.000529859179395
The sample variance is: 8.333426203292362

The population mean is: 15.0
The population variance is: 8.333333333333334

9.7 A Mixed Discrete-Continuous Distribution

We'll motivate this example with a little story.
Suppose that to apply for a job you take an interview and either pass or fail it.

You have 5% chance to pass an interview and you know your salary will uniformly distributed in the interval 300~400 a
day only if you pass.

We can describe your daily salary as a discrete-continuous variable with the following probabilities:

P(X =0)=0.95

400
P(300 < X < 400) = (z)dz = 0.05
300
f(x) = 0.0005

Let’s start by generating a random sample and computing sample moments.

x = np.random.rand(1_000_000)

# x[x > 0.95] = 100*x[x > 0.95]+300

x[x > 0.95] = 100*np.random.rand(len(x[x > 0.95]))+300
x[x <= 0.95] =0

p_hat = np.mean (x)
02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o02_hat)

The sample mean is: 17.531795729944566
The sample variance is: 5876.961767218592

162 Chapter 9. Some Probability Distributions



Intermediate Quantitative Economics with Python

The analytical mean and variance can be computed:

400

= /300 xf(x)dx

400

= 0.0005 / xdx
300
400

1
= 0.0005 x 51’2

300

400
02 =0.95x (0—17.5)% + / (x —17.5)f(z)dx
300
400

=0.95 x 17.5% + 0.0005/ (x —17.5)2dx
300
400

1
= 0.95 x 17.5” + 0.0005 x o (x —17.5)°

300

mean = 0.0005*0.5* (400**2 — 300**2)
var = 0.95*17.5*%*2+0.0005/3* ((400-17.5) **3-(300-17.5) **3)

print ("mean: ", mean)
print ("variance: ", wvar)
mean: 17.5

variance: 5860.416666666666

9.8 Drawing a Random Number from a Particular Distribution

Suppose we have at our disposal a pseudo random number that draws a uniform random variable, i.e., one with probability
distribution

I-1

3

Prob{X =i} = % i=0,..

How can we transform X to get a random variable X for which Prob{X =i} = f;, ¢=0,...,I — 1, where f; is an
arbitary discrete probability distributiononz = 0,1, ..., —1?
The key tool is the inverse of a cumulative distribution function (CDF).
Observe that the CDF of a distribution is monotone and non-decreasing, taking values between 0 and 1.
We can draw a sample of a random variable X with a known CDF as follows:

o draw a random variable u from a uniform distribution on [0, 1]

« pass the sample value of v into the “inverse” target CDF for X

o X has the target CDF

Thus, knowing the “inverse” CDF of a distribution is enough to simulate from this distribution.

© Note

The “inverse” CDF needs to exist for this method to work.
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The inverse CDF is
Flluy=inf{fzr eR: Fz) >u} (0<u<l)
Here we use infimum because a CDF is a non-decreasing and right-continuous function.
Thus, suppose that
o U is a uniform random variable U € [0, 1]
» We want to sample a random variable X whose CDF is F.

It turns out that if we use draw uniform random numbers U and then compute X from
X =F1U),

then X is a random variable with CDF F'y(z) = F(x) = Prob{X < z}.

We'll verify this in the special case in which F' is continuous and bijective so that its inverse function exists and can be
denoted by F—1.

Note that
Fy (x) =Prob{X < z}
=Prob{F 1 (U) <z}
=Prob{U < F (x)}
= F ()

where the last equality occurs because U is distributed uniformly on [0, 1] while F'(x) is a constant given x that also lies
on [0, 1].

Let’s use numpy to compute some examples.
Example: A continuous geometric (exponential) distribution
Let X follow a geometric distribution, with parameter A > 0.

Its density function is

Its CDF is

Let U follow a uniform distribution on [0, 1].
X is a random variable such that U = F(X).
The distribution X can be deduced from
U=FX)=1—e?X

— — U = e_)\X
=  log(1-U)=-)\X
1-0)
— X =
-\
Let’s draw u from U[0, 1] and calculate 2z = W‘

We'll check whether X seems to follow a continuous geometric (exponential) distribution.

Let’s check with numpy.
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n, A =1.000_000, 0.3

S

draw uniform numbers
= np.random.rand (n)

o

# transform
= —np.log(l-u) /A

w

# draw geometric distributions
_g = np.random.exponential (1 / A, n)

b

# plot and compare
plt.hist (x, bins=100, density=True)
plt.show ()

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0 10 20 30 40

0.00 -

plt.hist (x_g, bins=100, density=True, alpha=0.6)
plt.show ()
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0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 -

20 30 40

Geometric distribution

Let X distributed geometrically, that is
Prob(X =i) = (1— XA, Xe(0,1), i=0,1,..
Prob(X =i)=1¢=(1—A AN=——-=1
; (X=14) ( ); i

Its CDF is given by
Prob(X <i) = (1—X) Y X
j=0
1— )\i+1
— (1= N[
=1— /\i+1
— F(X)=F,

7

Again, let U follow a uniform distribution and we want to find X such that (X) = 0.

Let’s deduce the distribution of X from
U=F(X)=1—\t

1— {7 = )&+l
log(1— ) = (z + 1) log A
log(1—U)

= 1
log A v
log(1— 0
og( ) _1_s
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However, U = F~1(X ) may not be an integer for any = > 0.
So let

~

log(1—"U)

= —1
z=1 log A ]

where [.] is the ceiling function.
Thus z is the smallest integer such that the discrete geometric CDF is greater than or equal to U.

We can verify that x is indeed geometrically distributed by the following numpy program.

© Note

The exponential distribution is the continuous analog of geometric distribution.

n, A =1 000_000, 0.8

S

draw uniform numbers
= np.random.rand (n)

o

S

transform
= np.ceil (np.log(l-u)/np.log(A) — 1)

w

# draw geometric distributions
X_g = np.random.geometric (1-A, n)

# plot and compare
plt.hist (x, bins=150, density=True)
plt.show ()
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0.4
0.3 A
0.2 1

0.1 4

0.0 h“l"""ln....
10 20

np.random.geometric (1-A, n).max()

30 40 50 60 70

np.int64 (74)
np.log(0.4) /np.log(0.3)
np.float64(0.7610560044063083)

plt.hist (x_g, bins=150, density=True, alpha=0.56)
plt.show ()
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0.40 A

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 1 1 1 I 1 T T T
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10.1 Overview

This lecture illustrates two of the most important theorems of probability and statistics: The law of large numbers (LLN)
and the central limit theorem (CLT).

These beautiful theorems lie behind many of the most fundamental results in econometrics and quantitative economic
modeling.

The lecture is based around simulations that show the LLN and CLT in action.
We also demonstrate how the LLN and CLT break down when the assumptions they are based on do not hold.
In addition, we examine several useful extensions of the classical theorems, such as
¢ The delta method, for smooth functions of random variables, and
« the multivariate case.
Some of these extensions are presented as exercises.

We'll need the following imports:

import matplotlib.pyplot as plt

import random

import numpy as np

from scipy.stats import t, beta, lognorm, expon, gamma, uniform
from scipy.stats import gaussian_kde, poisson, binom, norm, chi?2
from mpl_toolkits.mplot3d import Axes3D

(continues on next page)
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(continued from previous page)

from matplotlib.collections import PolyCollection
from scipy.linalg import inv, sgrtm

10.2 Relationships

The CLT refines the LLN.
The LLN gives conditions under which sample moments converge to population moments as sample size increases.

The CLT provides information about the rate at which sample moments converge to population moments as sample size
increases.

10.3 LLN

We begin with the law of large numbers, which tells us when sample averages will converge to their population means.

10.3.1 The Classical LLN

The classical law of large numbers concerns independent and identically distributed (IID) random variables.
Here is the strongest version of the classical LLN, known as Kolmogorov's strong law.
Let X, ..., X,, be independent and identically distributed scalar random variables, with common distribution F'.

When it exists, let 1« denote the common mean of this sample:
=X = /xF(dJ:)
In addition, let

X, =

n
PR
i=1

3=

Kolmogorov’s strong law states that, if E|X]| is finite, then
P{X, - pasn— oo} =1 (10.1)

‘What does this last expression mean?

Let’s think about it from a simulation perspective, imagining for a moment that our computer can generate perfect random
samples (which of course it can’t).

Let’s also imagine that we can generate infinite sequences so that the statement X,, — 1 can be evaluated.

In this setting, (10.1) should be interpreted as meaning that the probability of the computer producing a sequence where
X, — p fails to occur is zero.
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10.3.2 Proof

The proof of Kolmogorov’s strong law is nontrivial — see, for example, theorem 8.3.5 of [Dudley, 2002].

On the other hand, we can prove a weaker version of the LLN very easily and still get most of the intuition.

The version we prove is as follows: If X, ..., X,, is IID with EX 3 < o0, then, for any € > 0, we have
P{IX,—ul>e =0 as n—oo (10.2)

(This version is weaker because we claim only convergence in probability rather than almost sure convergence, and assume

a finite second moment)

To see that this is so, fix € > 0, and let 2 be the variance of each X;.

Recall the Chebyshev inequality, which tells us that

% 2
P{I%, —pl> o) < (a2l (10.3)

Now observe that

1 &
i=1 j=1
1 & 9
=EZ;[E(XZ-—M)
_
o n

Here the crucial step is at the third equality, which follows from independence.
Independence means that if i # j, then the covariance term E(X; — 11)(X; — ) drops out.
As a result, n?2 — n terms vanish, leading us to a final expression that goes to zero in n.

Combining our last result with (10.3), we come to the estimate

P{X,—pl>e <— (10.4)

The claim in (10.2) is now clear.

Of course, if the sequence X1, ..., X, is correlated, then the cross-product terms (X, — 1) (X; — 1) are not necessarily
zero.

While this doesn’t mean that the same line of argument is impossible, it does mean that if we want a similar result then
the covariances should be “almost zero” for “most” of these terms.

In a long sequence, this would be true if, for example, E(X, — 1) (X ; — 1) approached zero when the difference between
1 and j became large.

In other words, the LLN can still work if the sequence X, ..., X,, has a kind of “asymptotic independence”, in the sense
that correlation falls to zero as variables become further apart in the sequence.

This idea is very important in time series analysis, and we’ll come across it again soon enough.
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10.3.3 lllustration

Let’s now illustrate the classical IID law of large numbers using simulation.

In particular, we aim to generate some sequences of IID random variables and plot the evolution of X », a8 T increases.
Below is a figure that does just this (as usual, you can click on it to expand it).

It shows IID observations from three different distributions and plots X, against n in each case.

The dots represent the underlying observations X, for i =1, ..., 100.

In each of the three cases, convergence of X, to x occurs as predicted
n = 100

# Arbitrary collection of distributions
distributions = {"student's t with 10 degrees of freedom": t(10),
"B(2, 2)": beta(z2, 2),
"lognormal LN (O, 1/2)": lognorm(0.5),
"y (5, 1/2)": gamma (5, scale=2),
"poisson (4)": poisson(4),
"exponential with A = 1": expon (1)}

# Create a figure and some axes
num_plots = 3

fig, axes = plt.subplots (num_plots, 1, figsize=(10, 20))

# Set some plotting parameters to improve layout

bbox = (0., 1.02, 1., .102)
legend_args = {'ncol': 2,
'bbox_to_anchor': bbox,
Vlee"s 3,
'mode': 'expand'}

plt.subplots_adjust (hspace=0.5)

for ax in axes:
# Choose a randomly selected distribution
name = random.choice(list (distributions.keys()))
distribution = distributions.pop (name)

# Generate n draws from the distribution
data = distribution.rvs(n)

# Compute sample mean at each n

sample_mean = np.empty (n)
for i in range(n):
sample_mean[i] = np.mean(datal[:i+1])
# Plot
ax.plot (list (range(n)), data, 'o', color='grey', alpha=0.5)
axlabel = r'S\bar nS$ for $X_ 1 \sim$' + name

ax.plot (list (range (n)), sample_mean, 'g-', 1lw=3, alpha=0.6, label=axlabel)
m = distribution.mean ()

ax.plot (list (range(n)), [m] * n, 'k——', 1lw=1.5, label=r'S$\mu$')
ax.vlines (list (range(n)), m, data, 1lw=0.2)

ax.legend(**legend_args, fontsize=12)

plt.show ()
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X, for X; ~ lognormal LN(0, 1/2) -—=u
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The three distributions are chosen at random from a selection stored in the dictionary distributions.

104 CLT

Next, we turn to the central limit theorem, which tells us about the distribution of the deviation between sample averages
and population means.

10.4.1 Statement of the Theorem

The central limit theorem is one of the most remarkable results in all of mathematics.
In the classical IID setting, it tells us the following:

If the sequence X1, ..., X,, is IID, with common mean / and common variance o € (0, 00), then

\/H(Xn—u)iN(O,oz) as n— oo (10.5)

d . e . . ..
Here — N (0, 0?) indicates convergence in distribution to a centered (i.e, zero mean) normal with standard deviation o.

10.4.2 Intuition

The striking implication of the CLT is that for any distribution with finite second moment, the simple operation of adding
independent copies always leads to a Gaussian curve.

A relatively simple proof of the central limit theorem can be obtained by working with characteristic functions (see, e.g.,
theorem 9.5.6 of [Dudley, 2002]).

The proof is elegant but almost anticlimactic, and it provides surprisingly little intuition.

In fact, all of the proofs of the CLT that we know are similar in this respect.

Why does adding independent copies produce a bell-shaped distribution?

Part of the answer can be obtained by investigating the addition of independent Bernoulli random variables.
In particular, let X, be binary, with P{X, = 0} = P{X, = 1} = 0.5, and let X, ..., X, be independent.
Think of X, = 1 as a “success”, so that Y,, = Z?:1 X is the number of successes in 7 trials.

The next figure plots the probability mass function of Y, forn =1,2,4,8

fig, axes = plt.subplots (2, 2, figsize=(10, 6))
plt.subplots_adjust (hspace=0.4)

axes = axes.flatten ()

ns = [1, 2, 4, 8]

dom = list (range (9))

for ax, n in zip(axes, ns):
b = binom(n, 0.5)
ax.bar (dom, b.pmf (dom), alpha=0.6, align='center')
ax.set (xlim=(-0.5, 8.5), ylim=(0, 0.55),
xticks=1list (range(9)), yticks=(0, 0.2, 0.4),
title=f'$n = {n}$")

plt.show ()
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When n = 1, the distribution is flat — one success or no successes have the same probability.
When n = 2 we can either have 0, 1 or 2 successes.
Notice the peak in probability mass at the mid-point k = 1.

The reason is that there are more ways to get 1 success (“fail then succeed” or “succeed then fail”) than to get zero or two
successes.

Moreover, the two trials are independent, so the outcomes “fail then succeed” and “succeed then fail” are just as likely as
the outcomes “fail then fail” and “succeed then succeed”.

(If there was positive correlation, say, then “succeed then fail” would be less likely than “succeed then succeed”)

Here, already we have the essence of the CLT: addition under independence leads probability mass to pile up in the
middle and thin out at the tails.

For n = 4 and n = 8 we again get a peak at the “middle” value (halfway between the minimum and the maximum
possible value).

The intuition is the same — there are simply more ways to get these middle outcomes.
If we continue, the bell-shaped curve becomes even more pronounced.

We are witnessing the binomial approximation of the normal distribution.
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10.4.3 Simulation 1

Since the CLT seems almost magical, running simulations that verify its implications is one good way to build intuition.

To this end, we now perform the following simulation
1. Choose an arbitrary distribution F for the underlying observations X;.

2. Generate independent draws of Y,, := \/n(X,, — ).

3. Use these draws to compute some measure of their distribution — such as a histogram.

4. Compare the latter to N (0, o2).

Here’s some code that does exactly this for the exponential distribution F'(z) = 1 — e™**.

(Please experiment with other choices of F', but remember that, to conform with the conditions of the CLT, the distri-

bution must have a finite second moment.)

# Set parameters

n = 250 # Choice of n

k = 100000 # Number of draws of Y_n
distribution = expon(2) # Exponential distribution, A = 1/2
B, s = distribution.mean(), distribution.std()

# Draw underlying RVs. Each row contains a draw of X 1,..,X_n
data = distribution.rvs((k, n))

# Compute mean of each row, producing k draws of \bar X_n
sample_means = data.mean (axis=1)

# Generate observations of Y _n

Y = np.sqgrt(n) * (sample_means — 1)

# Plot

fig, ax = plt.subplots(figsize=(10, 6))

xmin, xmax = -3 * s, 3 * s

ax.set_xlim(xmin, xmax)

ax.hist (Y, bins=60, alpha=0.5, density=True)

xgrid = np.linspace (xmin, xmax, 200)

ax.plot (xgrid, norm.pdf (xgrid, scale=s), 'k-', 1lw=2, label=r'sSN
ax.legend()

plt.show ()

(0, \sigma~2)s"')
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-3 -2 -1 0 1 2 3

Notice the absence of for loops — every operation is vectorized, meaning that the major calculations are all shifted to
highly optimized C code.

The fit to the normal density is already tight and can be further improved by increasing n.

You can also experiment with other specifications of F'.

10.4.4 Simulation 2

Our next simulation is somewhat like the first, except that we aim to track the distribution of Y;, := \/n(X,, — p1) as n
increases.

In the simulation, we’ll be working with random variables having 1 = 0.
Thus, when n = 1, we have Y; = X, so the first distribution is just the distribution of the underlying random variable.
For n = 2, the distribution of Y, is that of (X, 4+ X,)/+/2, and so on.

What we expect is that, regardless of the distribution of the underlying random variable, the distribution of Y,, will smooth
out into a bell-shaped curve.

The next figure shows this process for X; ~ f, where f was specified as the convex combination of three different beta
densities.

(Taking a convex combination is an easy way to produce an irregular shape for f.)

In the figure, the closest density is that of Y;, while the furthest is that of Y5
beta_dist = beta(2, 2)

def gen_x_draws (k) :

mrn

Returns a flat array containing k independent draws from the

distribution of X, the underlying random variable. This distribution
(continues on next page)
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(continued from previous page)

is itself a convex combination of three beta distributions.
mirrmn

bdraws = beta_dist.rvs((3, k))
# Transform rows, so each represents a different distribution

bdraws [0, :] —= 0.5

bdraws[1, :] += 0.6

bdraws[2, :]1 —= 1.1

# Set X[i1] = bdraws[j, 1], where j is a random draw from {0, 1, 2}
js = np.random.randint (0, 2, size=k)

X = bdraws[js, np.arange (k)]

# Rescale, so that the random variable is zero mean
m, sigma = X.mean(), X.std()

return (X - m) / sigma

nmax = 5
reps = 100000
ns = list(range(l, nmax + 1))

# Form a matrix Z such that each column is reps independent draws of X

Z = np.empty ((reps, nmax))
for i in range (nmax) :
Z[:, 1] = gen_x_draws (reps)

# Take cumulative sum across columns
S = Z.cumsum(axis=1)

# Multiply j-th column by sqgrt j

Y = (1 / np.sqgrt(ns)) * S

# Plot
ax = plt.figure(figsize = (10, 6)) .add_subplot (projection='3d")

a, b=-3, 3
gs = 100
xs = np.linspace(a, b, gs)

# Build verts

greys = np.linspace (0.3, 0.7, nmax)

verts []

for n in ns:
density = gaussian_kde(Y[:, n-11])
ys = density(xs)
verts.append(list (zip(xs, ys)))

poly = PolyCollection(verts, facecolors=[str(g) for g in greys])
poly.set_alpha(0.85)
ax.add_collection3d(poly, zs=ns, zdir='x")

ax.set (x1im3d= (1, nmax), xticks=(ns), ylabel='SY n$', zlabel='S$p(y_n)s$',
xlabel=("n"), yticks=((-3, 0, 3)), ylim3d=(a, b),
z1im3d=(0, 0.4), zticks=((0.2, 0.4)))
ax.invert_xaxis ()
# Rotates the plot 30 deg on z axis and 45 deg on x axis
ax.view_init (30, 45)
plt.show ()
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As expected, the distribution smooths out into a bell curve as n increases.
We leave you to investigate its contents if you wish to know more.

If you run the file from the ordinary IPython shell, the figure should pop up in a window that you can rotate with your
mouse, giving different views on the density sequence.

10.4.5 The Multivariate Case

The law of large numbers and central limit theorem work just as nicely in multidimensional settings.
To state the results, let’s recall some elementary facts about random vectors.

A random vector X is just a sequence of k random variables (X7, ..., X},).

Each realization of X is an element of R*.

A collection of random vectors X, ..., X, is called independent if, given any n vectors X, ... , x,, in R¥, we have
P{X; <xqy,...,X, <x,} =P{X; <xy} x- xP{X,, <x,}

(The vector inequality X < x means that X; < x; for j =1,..., k)
Let pu; := E[X,] forall j =1,... k.
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